

大 綱

- 1. 前言
- 2. 試體設計及製作
- 3. 載重試驗
- 4. 結構分析參數
- 5. 結論

緣起

- 國內因少子化、營造產業人力缺乏,必須發展低勞力的營造工法。
- 國內具鋼網牆施工經驗及鋼管量產技術與設備。
- 「鋼管鋼網牆系統」結合鋼網牆與鋼管,增加牆內配筋量可具結構作用。

鋼管鋼網牆系統特性:

- ✓適用於低矮結構
- ✓ 節省人力及時間
- ✓沒有梁、柱桿件,樓版底面 及牆面平整,使用者接受度 高。

鋼管鋼網牆系統組成

鋼管支架

鋼網牆

鋼管鋼網牆施工情況

- 不使用傳統模板、不需拆模,施工快速,樓梯亦可採用。
- 可依據需求在牆上設置開口。

鋼管、鋼筋及骨架

抓漿網鋪設完成

灌漿完成之情況

人力需求分析

以一戶三層樓街屋為例:

- ✓ 樓地板面積134 m² (40.5坪)。
- ✓ 僅計算上部結構施工現場所需人力、工作日。
- ✓ 該案例以鋼管鋼網牆系統建造,傳統RC工法之數據 為建造單位以過去之建造經驗估算。

鋼管鋼網牆

工項	工數	工作日			
組立工	5	4			
鋼網牆工	8	14			
混凝土工	6	1			
總和	138 工日				

節省162工日, 節省54%人力需求。

傳統RC

工種	工數	工作日		
鋼筋工	5	15		
模板工(釘)	9	21		
混凝土工	4	3		
模板工(拆)	4	6		
總和	300 工日			

技術需求高 最耗人力

建造時間分析

鋼管鋼網牆

共19工作日

減少26個工作日, 減少58%建造時間。

w

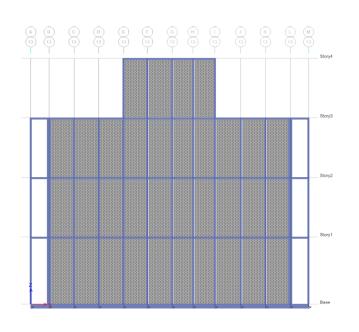
傳統RC

共45工作日

單位面積造價分析

- · 鋼管鋼網牆: 14,000元/m² (46,000 元/坪) 傳統RC: 13,000元/m² (43,000 元/坪)
- 目前鋼管鋼網牆高7%,數量多時應比傳統RC工法還低。

預估省工及環保效益


每年新建1~4層樓建物總樓地板面積約1,425萬平方公尺,假設其中有10%改用鋼管鋼網牆系統建造:

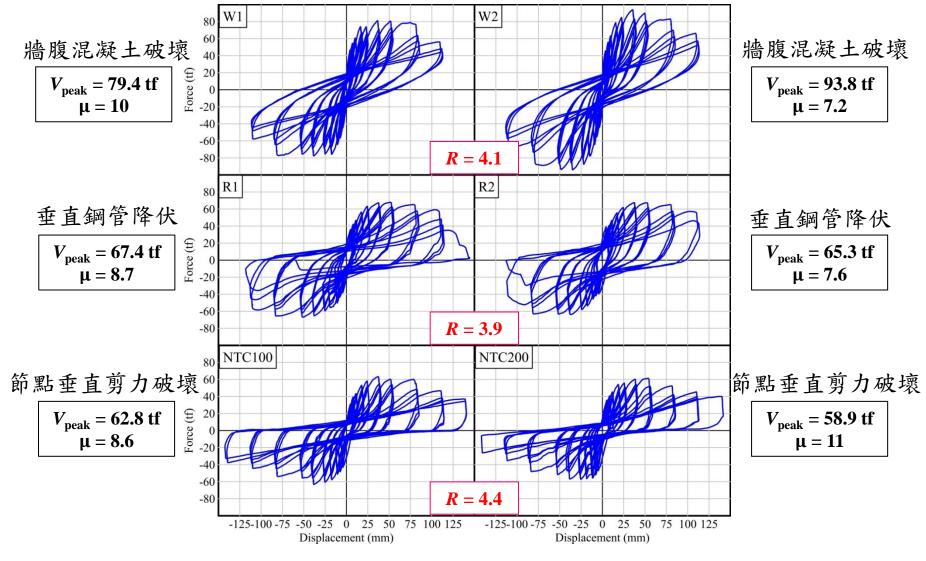
- ✓ 可降低171萬工日之人力需求,約等於整年降低6,840 個人力需求。
- ✓ RC結構木模板使用量約105 kg/m²,一套模板以重複使用6次計,每年約可減少2.5萬噸的廢棄模板。

結構分析與等值斜撐

使用等值斜撐模擬鋼管鋼網牆需要檢核的項目:

1. 等值斜撐強度 2. 節點垂直剪力 3. 鋼管桿件強度

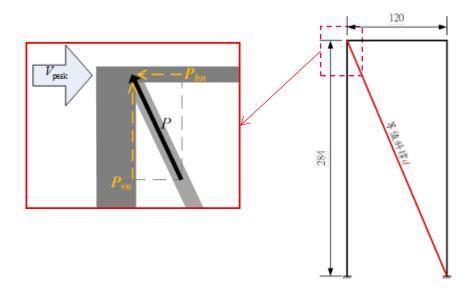
單一單元鋼管鋼網牆反復載重試驗 (2018)


探討問題:

- 等值斜撐模擬之有效斷面 積、強度及勁度等。
- 鋼管鋼網牆系統之韌性容 \mathbb{R} \mathbb{R}

試體 編號	主控破壞模式	數量
W	牆腹混凝土破壞	2
R	垂直鋼管降伏	2
NTC100	節點垂直剪力破	1
NTC200	壞	1

載重-位移遲滯迴圈


R值採用多少?

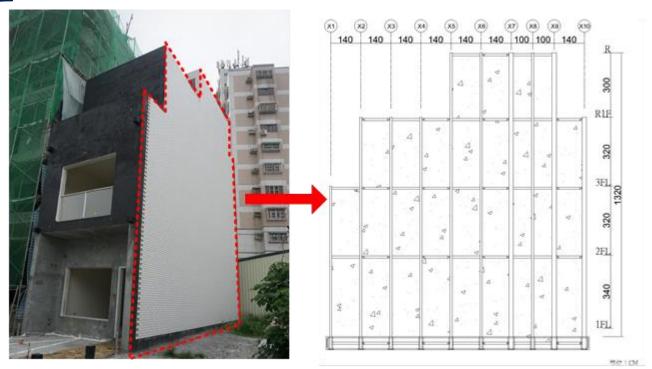
11

破壞模式及其對應強度

使用等值斜撐方法做結構分析及設計需要檢核3個項目。

項目	<u>強度</u>	依據
等值斜撐	$P = f_c$ ' $\times A$ $A = td/\alpha$ $\alpha = 7.7$	試驗資料
節點垂直剪力(P _{vn})	145 tf	試驗資料
垂直鋼管	桿件強度	規範

t: 牆體厚度

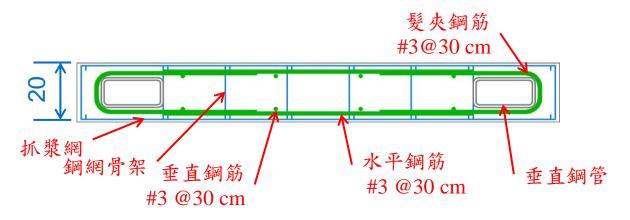

d: 等值斜撐長度

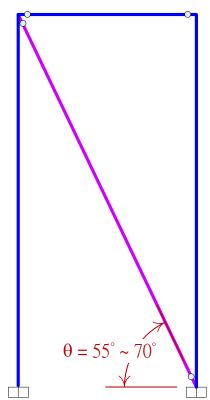
A: 等值斜撐面積

α:等值斜撐寬度係數

本計畫研究範圍與目的

- 實際結構為多單元鋼管鋼網牆,需進一步探討多單元 鋼管鋼網牆系統的強度與韌性,並進一步探討R值使 用3.2的可行性。
- 也進一步探討多單元鋼管鋼網牆以等值斜撐模擬之可靠性。

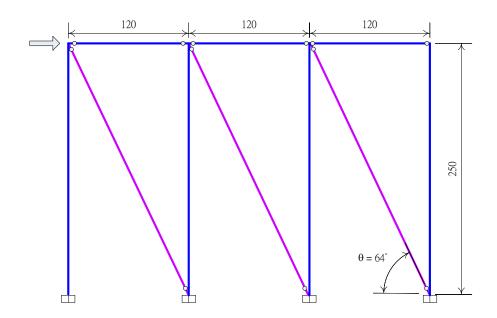



大 綱

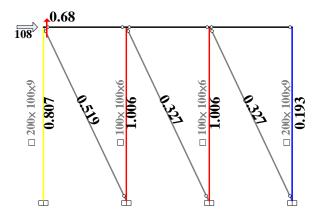
- 1. 前言
- 2. 試體設計及製作
 - 3. 載重試驗
 - 4. 結構分析參數
 - 5. 結論

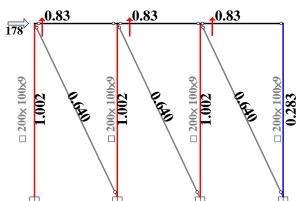
鋼管鋼網牆模組化系統

- 1. 高度: 250~340 cm之間; 寬度: 120~160 cm之 間;等值斜撐角度θ在55°~70°之間。
- 2. 牆厚固定為20 cm。
- 3. 鋼管材質為STKR490或STKR400, 斷面限制在 RHS 200×100×9 · RHS 200×100×6 · RHS 100×100×6或RHS 100×100×4。(依結構分析結果 選擇)
- 4. 鋼筋皆採用SD280之3號鋼筋,雙層雙向間距30 cm 之配置方式。水平向端部使用髮夾筋。



15


多單元構架分析


- ✓ 使用模組化鋼管鋼網牆系統。
- ✓ 樓層高採用250 cm,垂直鋼管跨距採用120 cm,等值斜撐角度64度。
- ✓ 水平鋼管端部使用簡易接頭,並視為鉸接。
- ✓ 分析構架:1層3跨、2層2跨、3層4跨。

1層3跨構架

註:SR表示Strength Ratio

外柱:STKR490 RHS 200×100×9

內柱:STKR490 RHS 100×100×6

斜撐SR: 0.52 外柱SR: 0.81

控制 內柱SR: 1.00

節點SR: 0.68 (最左側)

構架強度:108 tf

外柱: STKR490 RHS 200×100×9

內柱: STKR490 RHS 200×100×9

斜撐SR: 0.64

外柱SR: 1.00 ◀

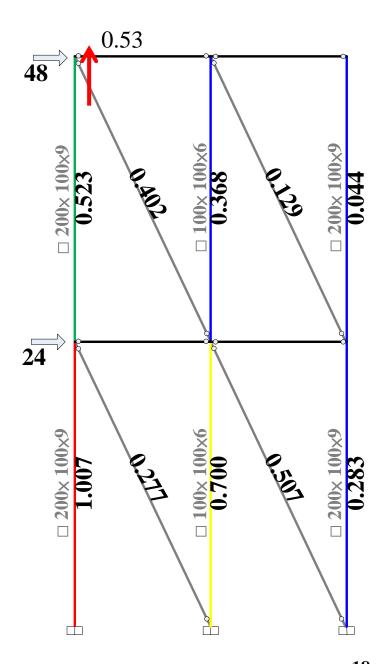
同時控制 內柱SR: 1.00

節點SR: 0.83

構架強度:178 tf (提升65%)

- 1層多跨構架,內外柱使用相同斷面強度效率較高。
- 臨界桿件為垂直鋼管。
- 柱斷面不大於STKR RHS 200×100×9時,等值斜撐及節點垂直剪力不控制構 架強度。

2層2跨分析


外柱: STKR490 RHS 200×100×9 內柱: STKR490 RHS 100×100×6

斜撐 SR: 0.51

垂直鋼管SR:1.00 ← 控制

節點SR: 0.53

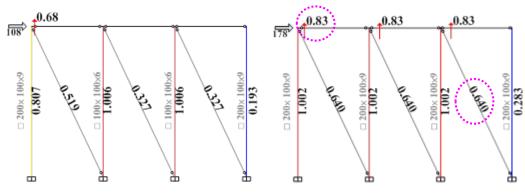
- ▶ 2層2跨時,中間之垂直鋼管受力較 小,可使用較小斷面的鋼管。
- ▶ 破壞由第一層外柱控制。
- ▶ 最大節點垂直剪力發生在最上層邊 跨角隅。

3層4跨分析


外柱: STKR490 RHS 200×100×9 內柱: STKR490 RHS 100×100×6

斜撑 SR: 0.47

垂直鋼管SR:1.06 ← 控制


節點SR: 0.42

- ▶ 破壞由第一層外柱控制。
- ▶ 最大節點垂直剪力發生在最上層 邊跨角隅。
- ▶ 多層多跨時,中間之垂直鋼管受 力較小,可使用較小斷面的鋼管。

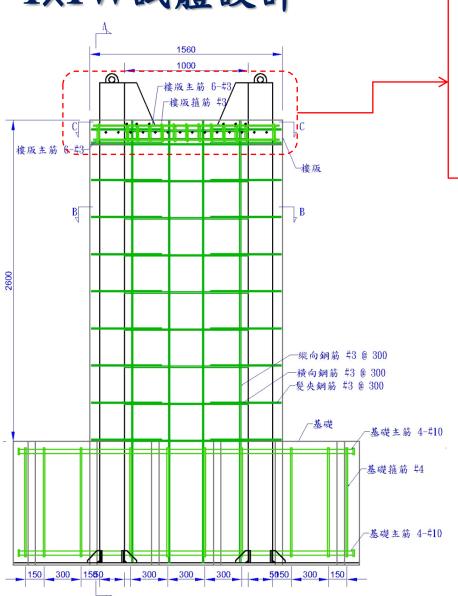
多單元等值斜撐構架分析結果彙整

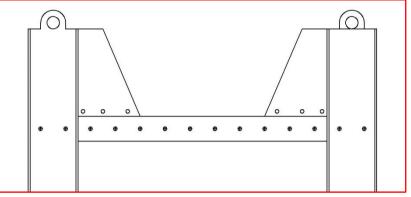
- ✓ 一層多跨時,內柱與外柱使用相同斷 面效率較高。
- ✓ 多層多跨時,內柱受力較小,可使用 較小鋼管斷面,最大節點垂直剪力發 生在最上層邊跨外側角隅。
- ✓ 多單元構架皆為垂直鋼管強度控制; 節點垂直剪力之最大Strength Ratio為 0.83;等值斜撐之最大Strength Ratio為 0.64 •

20

設計混凝土強度280 kgf/cm2。

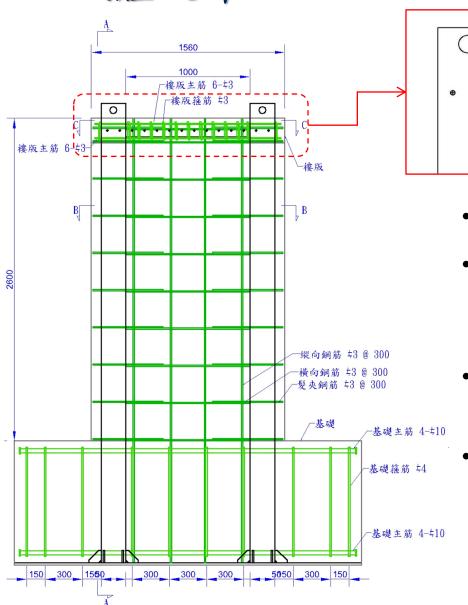
20

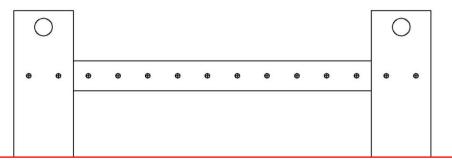

試驗計畫


- ✔ 等值斜撐強度、系統韌性及節點垂直剪力強度是由過去單一 單元試體試驗結果得到,應再增加試驗組數,以增加其可靠 性。
- ✔ 等值斜撐分析方法使用在多單元分析時之可靠性尚須試驗驗 譜。

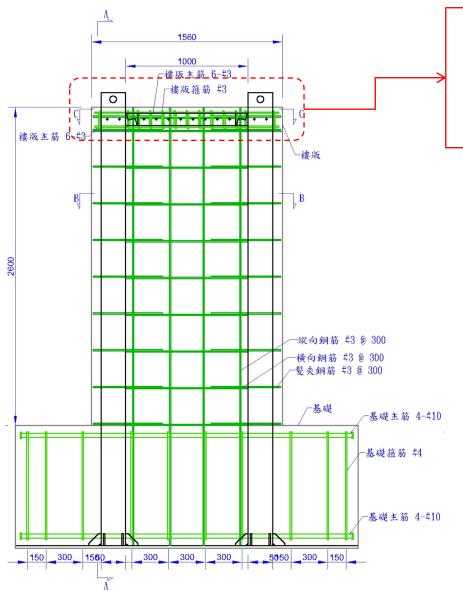
試體編號	試體型式	設定破壞模式	數量
1×1W		牆腹混凝土破壞	1
1×1F	1層1跨	垂直鋼管降伏	
1×1H		節點垂直剪力破壞	1
1×3	1層3跨	垂直鋼管降伏	1
2×2	2層2跨	垂直鋼管降伏	1

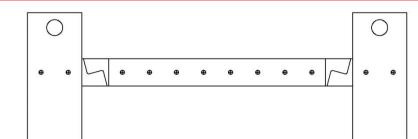
1層1跨試體比原計畫增加一個試體。


1×1W試體設計

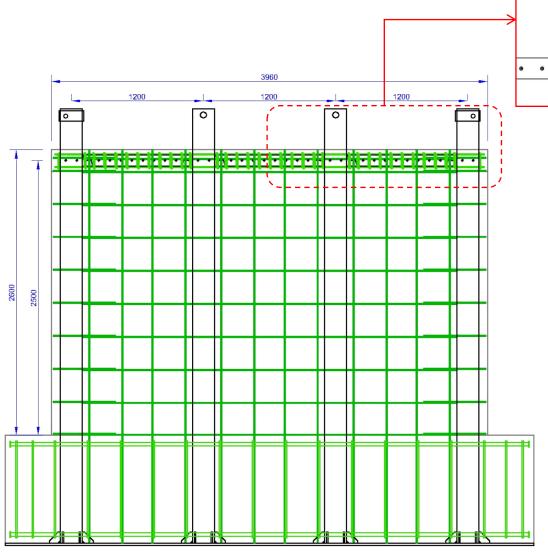


- 預期破壞模式為牆腹混凝土破壞。
- 水平鋼管端部採用銲接並增設加 勁板,確保角隅承壓強度充足。
- 試體高度約3.9m,對應樓層高 約2.6 m,牆體厚20 cm,樓版厚 20 cm •
- 柱心至心之距離1.2 m,整體寬 度約2.8 m。

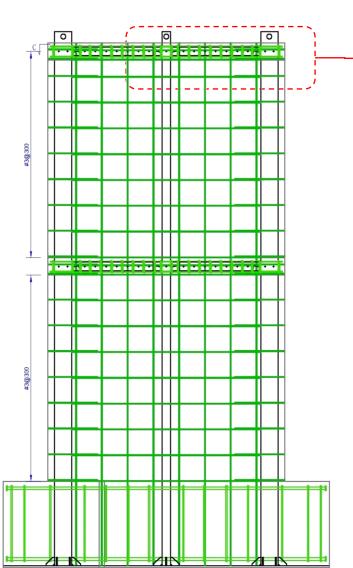

1×1F試體設計



- 預期破壞模式為垂直鋼管降伏。
- 試體高度約3.6m,對應樓層高 約2.6 m , 牆體厚20 cm , 樓版 厚20 cm。
- 柱心至心之距離1.2 m,整體寬 度約2.8 m。
- 垂直鋼管使用STKR490 RHS 200×100×9,內填充混凝土。


1×1H試體設計

- 期破壞模式為節點垂直剪力破壞。
- 試體高度約3.6 m,對應樓層高約2.6 m,牆體厚20 cm,樓版厚20 cm。
- 柱心至心之距離1.2 m,整體寬 度約2.8 m。
- 垂直鋼管使用STKR490 RHS
 200×100×9,內填充混凝土。


1×3試體設計

- 預期破壞模式為垂直鋼管 降伏。
- 試體高度約3.6 m, 樓層高 2.6 m •
- 柱心至心之距離1.2 m,整 體寬度約4.8 m。
- 內柱及外柱皆使用 STKR490 RHS 200×100×9, 內填充混凝土。

2×2試體設計

• 預期破壞模式為垂直鋼管降伏。

- 試體高度約5.8 m, 樓層高約2.6 m, 牆體厚20 cm, 樓版厚20 cm。
- 柱心至心之距離1.2 m,整體寬度約 3.7 m。
- 外柱使用STKR490 RHS 200×100×9,
 內柱使用STKR490 RHS 100×100×6,
 皆填充混凝土。

試體製作

試體製作完成

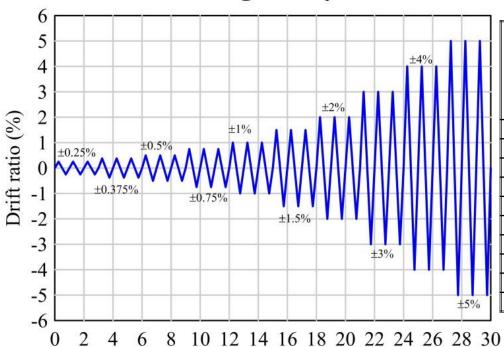
鋼材強度

試體	斷面	材質	降伏應力 MPa	極限應力 MPa
1×1W	RH 200×100×5.5×8	SN400YB	377	507
	PL 19t	SN400B	287	453
1×1F 1×1H 1×3 2×2	RHS 200×100×9	STKR490	477	547
2×2	RHS 100×100×6	STKR490	462	505

試體所用之SD280W 3號鋼筋降伏應力為 379 MPa, 極限應力為526 MPa。

混凝土材料強度

	批次	龄期	對應試原	<u><u></u> 会試體</u>	強度 (kgf/cm²)			
	1	48	1×.	3	228	220		
	1	77	2xí (第1樓		227	228		
		41	1×1`	W	408			
	2	49	1×1	F	405	408		混凝土強度偏高。
		51	1×1	Н	412			
		63	2xí (第2棋		42	9		ES
	• 設計	混凝土強度2	80 kgf/c	m ² °				
1×1	W	1×1F	1×1H		1×3			2×2

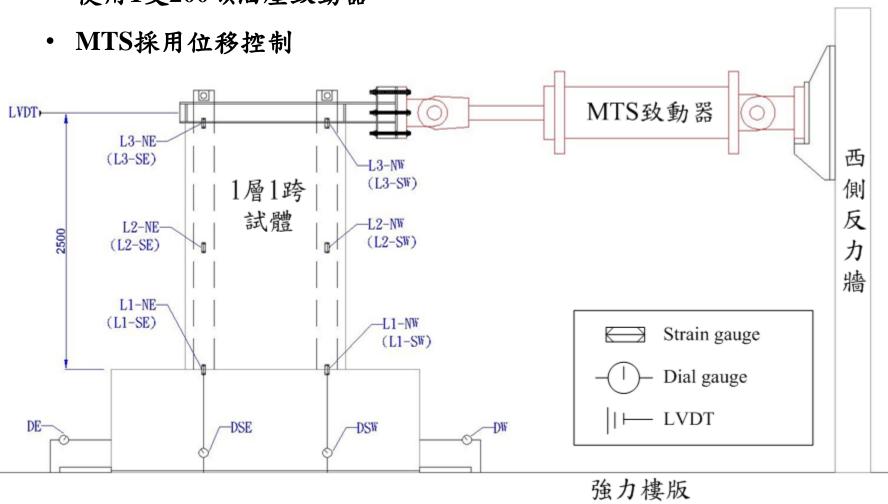

30

大綱

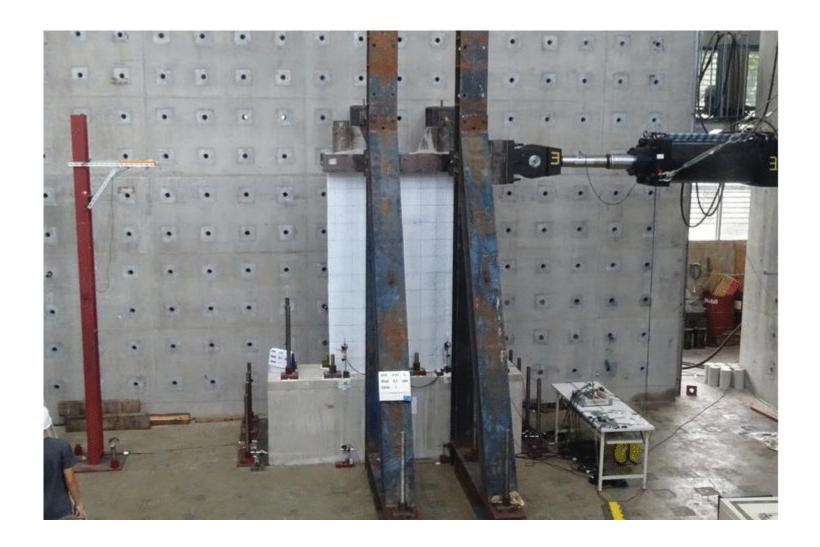
- 1. 前言
- 2. 試體設計及製作
- 3. 載重試驗
 - 4. 結構分析參數
 - 5. 結論

加載歷程

Loading History



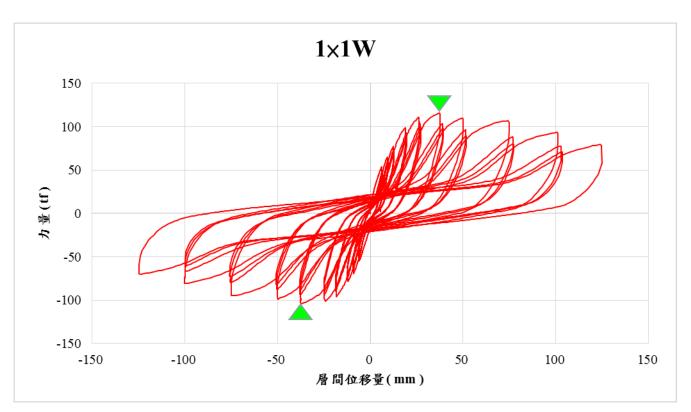
位 移	週	1層1跨試體 週 1層3跨試體		2層2跨試體	
角 (%)	期數	層間位移 (mm)	速度 (mm/sec)	樓頂位移 (mm)	速度 (mm/sec)
0.25	3	6.3	0.08	12.5	0.17
0.375	3	9.4	0.13	18.8	0.25
0.5	3	12.5	0.17	25.0	0.33
0.75	3	18.8	0.25	37.5	0.50
1.0	3	25.0	0.33	50.0	0.67
1.5	3	37.5	0.50	75.0	1.0
2.0	3	50.0	0.67	100	1.0
3.0	3	75.0	1.00	150	1.0
4.0	3	100	1.00	200	1.0
5.0	3	125	1.00	250	1.0


No. of Cycles

1層1跨試體-試驗裝置示意圖

• 使用1支200噸油壓致動器。

1×1W試體試驗情況



1×1W 遲滯迴圈

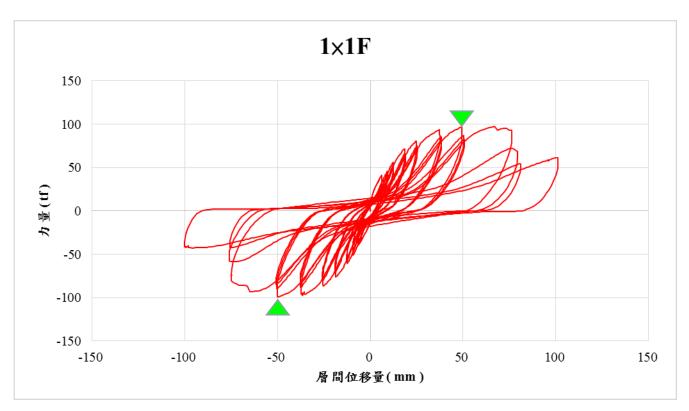
設計破壞模式:牆腹混凝土破壞

實際破壞模式:上水平桿件破壞

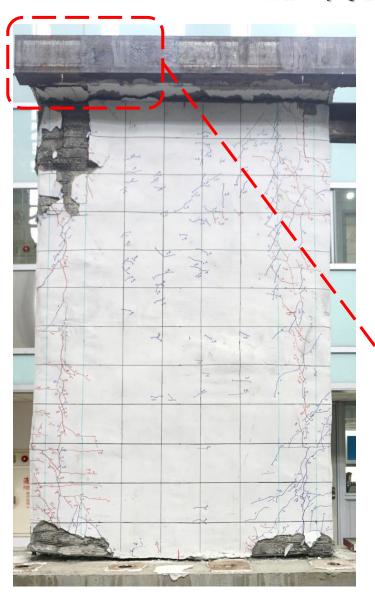
試驗最大強度:116 tf (1.5%) / -104 tf (1.5%)

1×1W 試體載重試驗結束破壞情況

- · 界面剪力裂縫發展完全。
- 牆腹剪力裂縫發展完全,且角隅處混 凝土也有壓碎,壓桿效應有發生。
- 由於混凝土強度過高(408 kgf/cm²), 樓版上方突出之垂直桿件變形,致使 破壞模式轉為水平桿件破壞。



1×1F遲滯迴圈

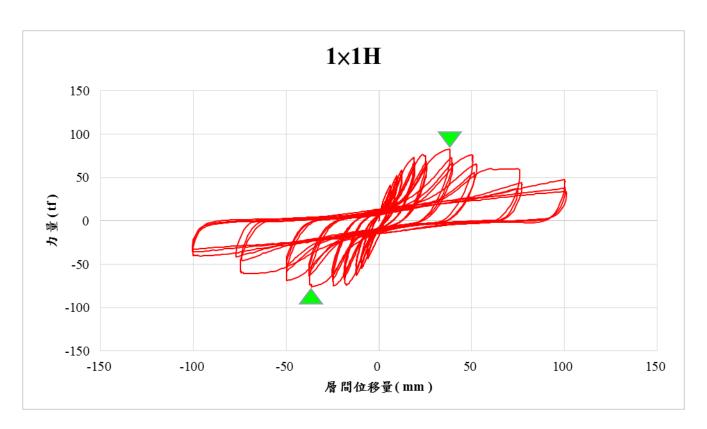

設計破壞模式:垂直鋼管降伏

實際破壞模式:結點垂直剪力破壞

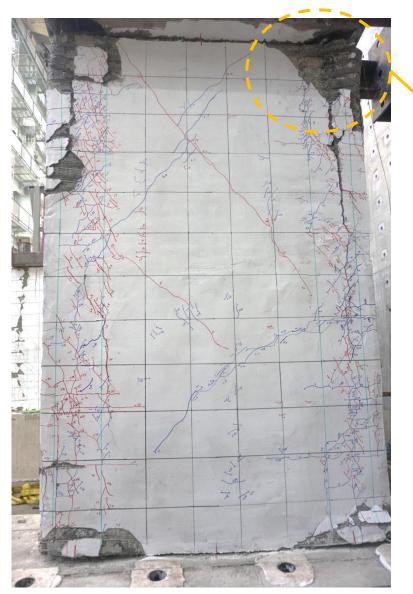
試驗最大強度:97.4 tf (2.0%) / -99.2 tf (2.0%)

1×1F 試體載重試驗結束破壞情況

- 由於混凝土強度過高(408 kgf/cm²), 界面剪力裂縫發展不完全,牆腹也沒 有剪力裂縫發展完全。
- 鑿除水平桿件與垂直桿件周圍混凝土 後發現結點受到垂直剪力發生破壞。



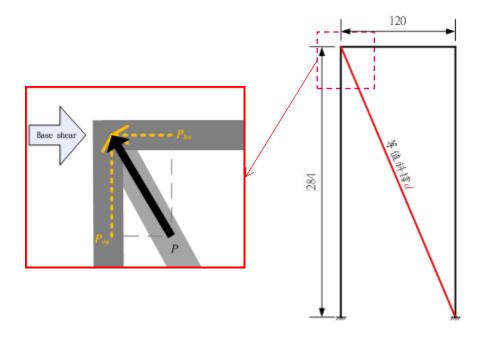
1×1H 遲滯迴圈


設計破壞模式:節點垂直剪力破壞

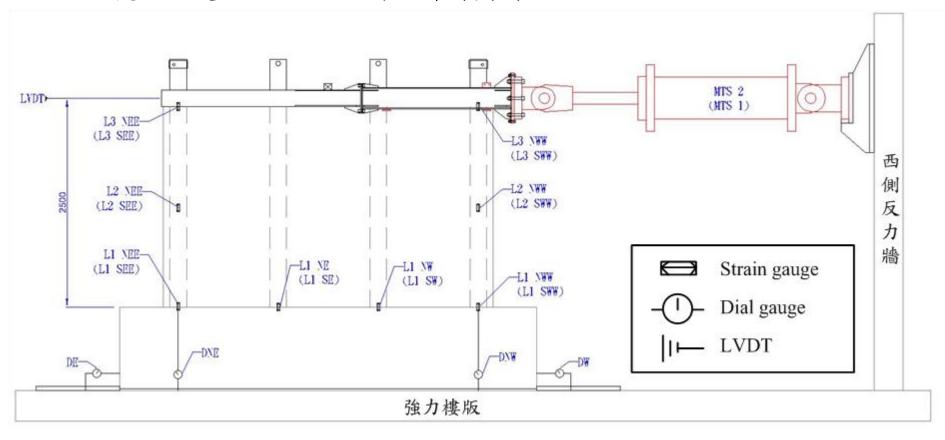
實際破壞模式:節點垂直剪力破壞

試驗最大強度:83.2 tf (1.5%) / -76.3 tf (1.5%)

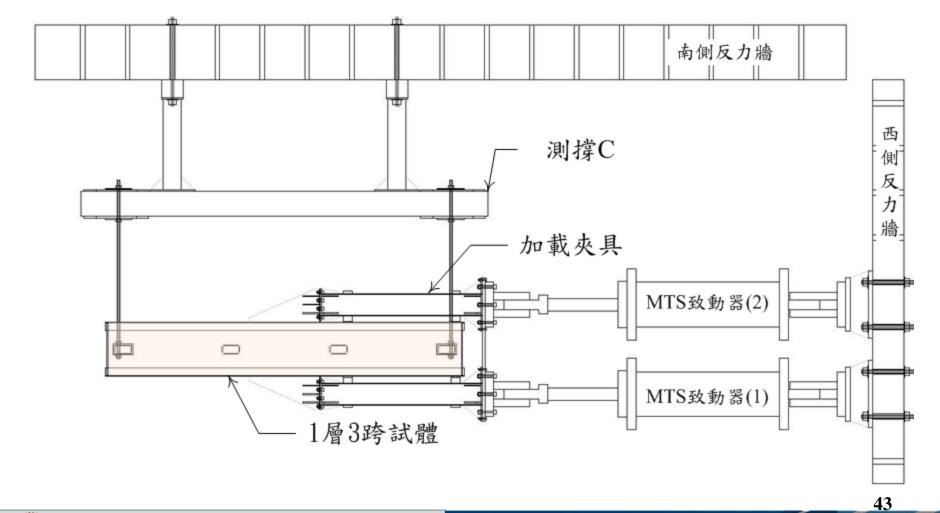
1×1H試體破壞情況



- 界面剪力裂縫及牆腹剪力裂縫發展不 完全。
- 簡易接頭破壞。
- 破壞模式為節點垂直剪力破壞。


1×1H試體節點垂直剪力強度

試體	節點垂直剪力強度(tf)				
NTC100	151				
NTC200	139	152			
1×1H	166				

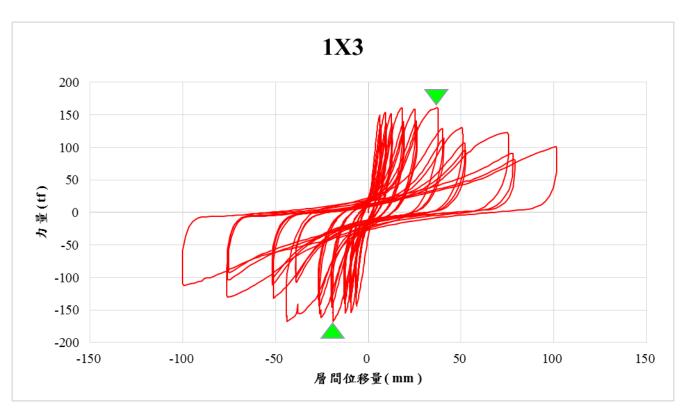

1×3試體試驗裝置

• 使用兩支200噸油壓致動器併聯共同施力。

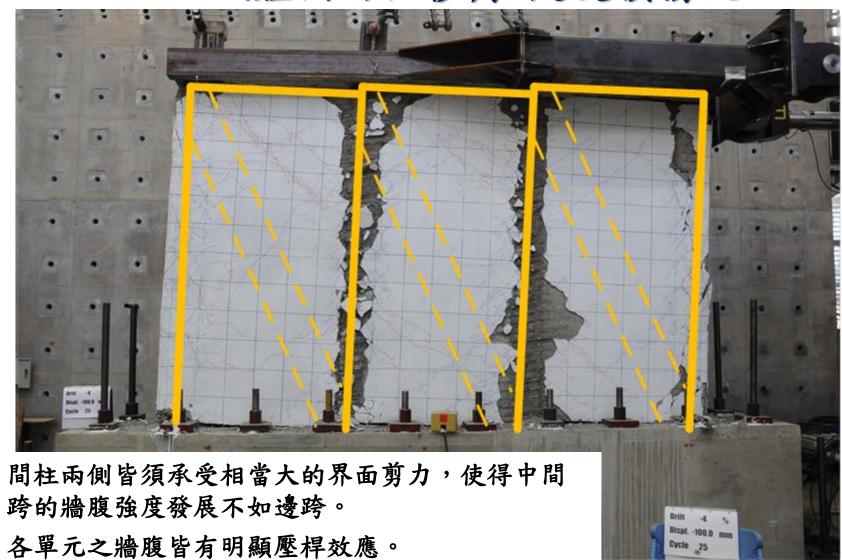
1×3試體試驗裝置

- MTS1及MTS2採用位移控制,位移量相同。
- 加載位置為樓版中央。

1×3 試體試驗情況

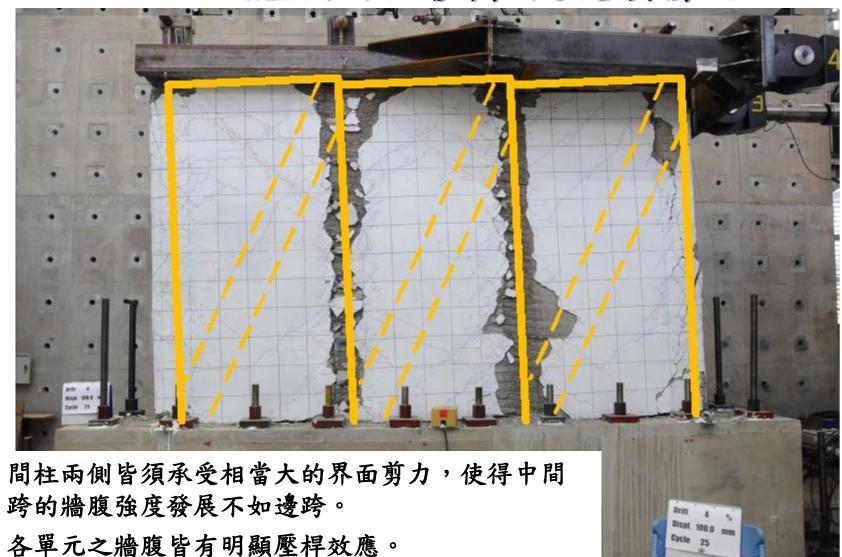


1×3 遲滯迴圈

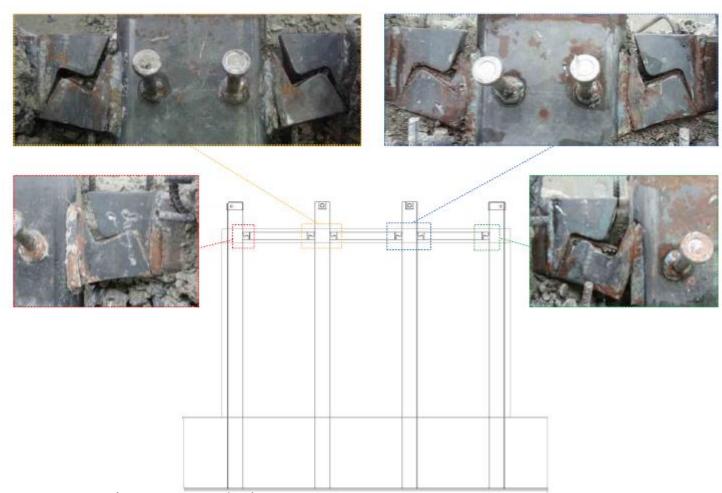

設計破壞模式:垂直鋼管降伏

實際破壞模式:結點垂直剪力破壞

試驗最大強度:161 tf (1.5%) / -167 tf (0.75%)



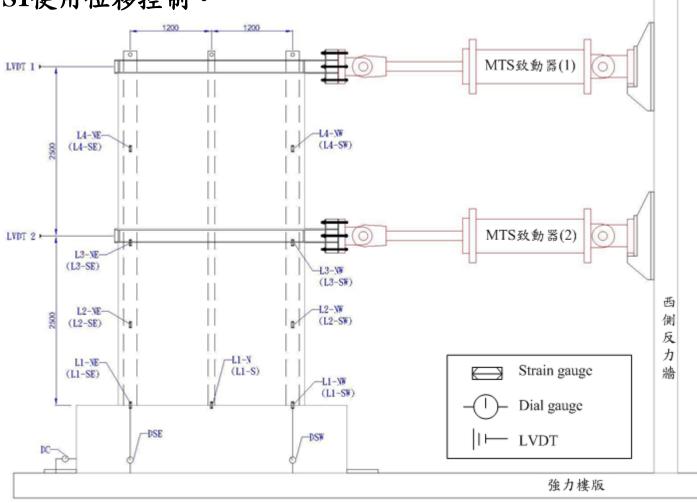
1×3 試體側向位移角4%受損情況


• 混凝土強度228 kgf/cm²。

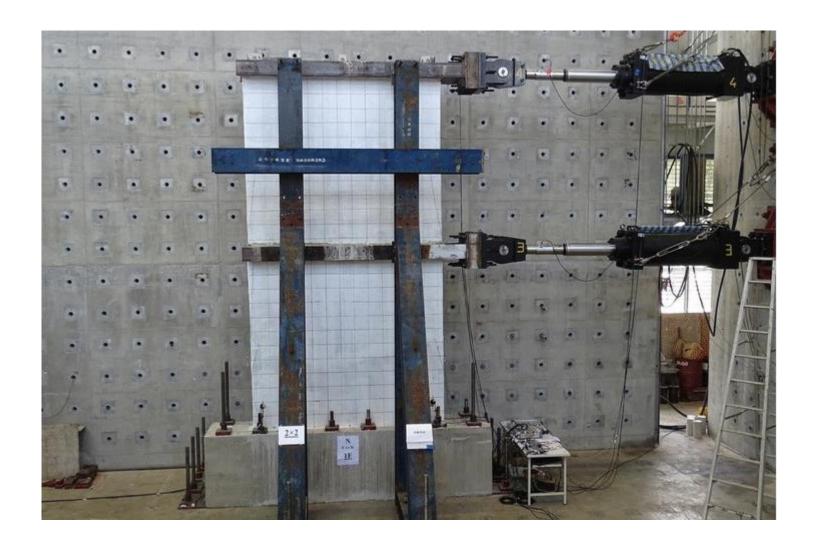
1x3 試體側向位移角4%受損情況

- 各單元之牆腹皆有明顯壓桿效應。
- 混凝土強度228 kgf/cm²。

1x3 試體破壞情況



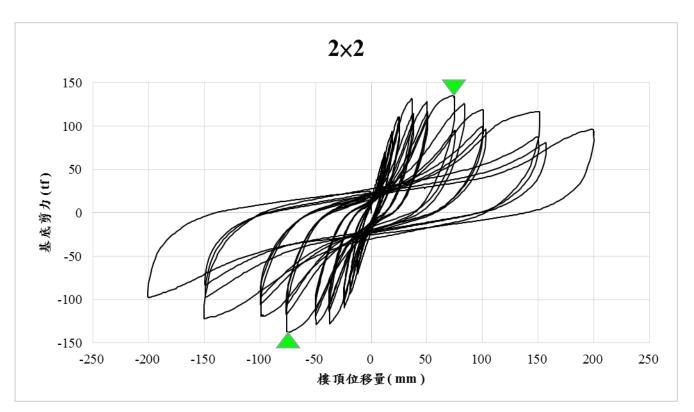
- 外側接頭破壞較內側嚴重。
- 推測此試體發生逐進式破壞。


2×2試體試驗裝置

- 使用兩支200噸油壓致動器。
- · MTS1使用位移控制。

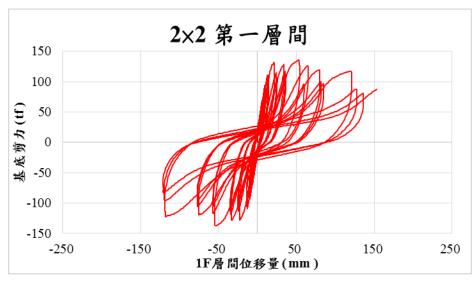
· MTS2採用力量控制,力量為 MTS1力量之一半。 □

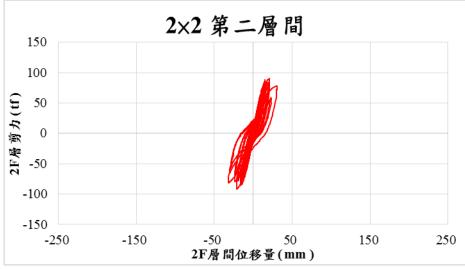
2×2 試體試驗情況



2×2 遲滯迴圈

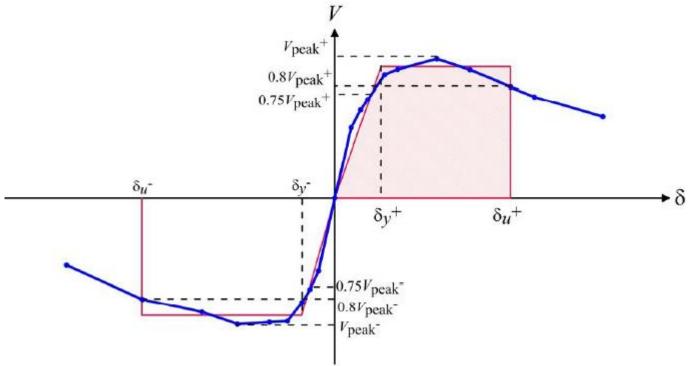
設計破壞模式:垂直鋼管降伏


實際破壞模式:垂直鋼管降伏

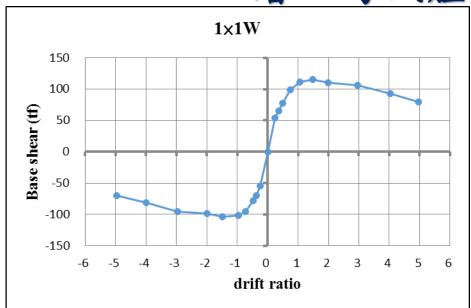

試驗最大基底剪力:136 tf (1.5%) / -138 tf (1.5%)

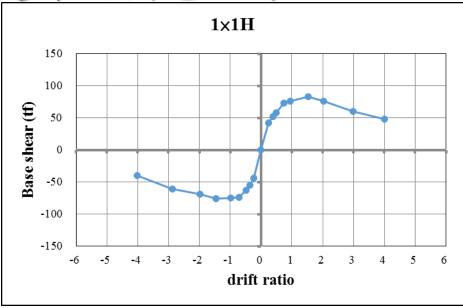
2×2 遲滯迴圈

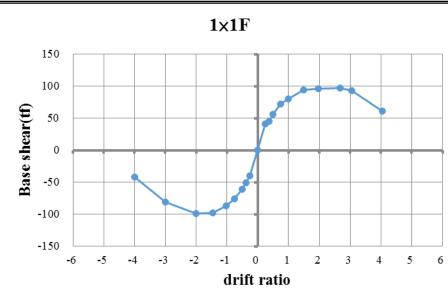
消能集中在第一層間。


2×2 試體破壞情況

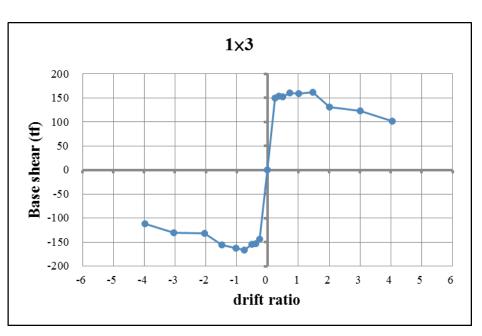
- 破壞集中在第一層。
- 第一層鋼管底部降伏,混凝土也有明 顯破壞。
- 第二層混凝土強度429 kgf/cm²。 第一層混凝土強度228 kgf/cm²。




包絡線示意圖



- 強度達 $0.75V_{
 m peak}$ 前構架視為彈性,與原點連成之斜率為彈性勁度 K_F 。
- 強度下降至 $0.8V_{
 m peak}$ 時之位移為極限位移 δ_u 。
- 達 δ_u 前包絡線所圍成之面積代表構架消散能量,以等能量概念求出紅線所包覆之面積與之相等,得到構架降伏位移 δ_v 。
- 勃性 $\mu = \delta_u/\delta_v$ 。


一層一跨試體遲滯迴圈包絡線

多單元試體遲滯迴圈包絡線

· 2×2為基底剪力與樓頂位移角之包 絡線。

最大強度、位移及彈性勁度

試體	$V_{ m peak}^+$	$V_{ m peak}^-$	δ_y^+	δ_y^-	δ_u^+	δ_u^-	θ_u^+	θ_u^-	K_F^+	K_F^-
編號	1	tf	m	m	m	m	9,	6	tf/r	nm
1×1W	116	-105	19.0	14.9	102	-95.4	4.08	-3.82	5.70	6.55
1×1F	97.4	-97.5	25.0	22.9	88.1	-75.8	3.52	-3.03	3.78	4.11
1×1H	82.7	-76.0	17.4	12.4	65.7	-72.1	2.63	-2.88	4.49	5.70
1×3	161	-167	6.12	7.30	55.5	-49.8	2.22	-1.99	24.8	21.3
2×2	136	-138	25.8	26.9	170	-175	6.80	-7.00	4.80	4.64
W-1	81.1	77.7	13.1	10.6	96.4	103	3.39	3.61	5.93	7.00
W-2	93.6	94.0	15.2	15.2	93.3	96.8	3.29	3.41	5.76	5.88
R-1	68.0	66.8	18.0	13.6	109	110	3.83	3.88	3.62	4.67
R-2	67.3	63.2	17.6	16.4	110	98.0	3.88	3.45	3.70	3.76
NTC100	63.2	62.4	17.4	8.98	95.3	89.5	3.36	3.15	3.39	6.35
NTC200	60.6	57.2	14.9	5.81	94.3	88.0	3.32	3.10	3.84	9.04

韌性、韌性容量及對應破壞模式

試體	$V_{ m peak}$	δ_y	δ_u	θ_u	K_{F}	μ	D	破壞
編號	tf	mm	mm	%	tf/mm	μ	R	模式
1×1W	111	17.0	98.7	39.5	5.44	5.90	3.29	D
1×1F	97.5	24.0	82.0	3.28	3.95	3.42	2.41	В
1×1H	79.4	14.9	68.9	2.76	5.10	4.80	2.93	В
1×3	164	6.71	52.7	2.11	23.1	7.85	3.86	В
2×2	137	26.4	173	6.90	4.72	6.55	3.48	С
W-1	79.4	11.9	99.7	3.50	6.47	8.38	4.01	A
W-2	93.8	15.2	95.1	3.35	5.82	6.26	3.39	A
R-1	67.4	15.8	110	3.86	4.15	6.96	3.62	C
R-2	65.3	17.0	104	3.67	3.73	6.12	3.35	С
NTC100	62.8	13.2	92.4	3.26	4.87	7.75	3.80	В
NTC200	58.9	10.4	91.2	3.21	6.44	10.7	4.53	В

破壞模式分類:A-表示為牆腹混凝土壓碎、B-表示為結點垂直剪力破壞、 C-表示為垂直鋼管降伏、D-其他。

大 綱

- 1. 前言
- 2. 試體設計及製作
- 3. 載重試驗
- 🛑 4. 結構分析參數
 - 5. 結論

等值斜稱設計強度

• 等值斜撐強度 (P_n) 以W-1及W-2式體試驗數據而得。 (2018,台科大)

$$P_n = f_c \times A$$

$$A = td/7.7$$

• 由於混凝土變異性較大,且試體數量不多,建議設計強度 (P) 強 度折減係數採0.65。

$$P = 0.65P_n$$

結點垂直剪力設計強度

結點接合方式	試體	結點垂直剪力強度		
	1X1H	148 tf		
簡易接頭	NTC100*	139 tf	149 tf	
	NTC200*	160 tf		
銲接	1x1F**	194	tf	

^{*}為2018年台科大之研究。

由於試體數量不多,建議設計強度 (P_{ν}) 強度折減係數採0.7。

- 結點使用簡易接頭 $P_v = 104 \text{ tf}$ 。
- 結點使用銲接,且水平桿件斷面為100×100(有效銲道長度為20 cm) $P_{v} = 136 \text{ tf} \circ$
- 結點使用銲接,且水平桿件斷面為200×100 (有效銲道長度為40 cm),依據試驗結果估算 $P_v = 204 \text{ tf}$ 。

^{**}有效銲道長度為20 cm。

系統韌性容量

- 系統韌性容量R以破壞模式為鋼管降伏之試體探討。
- 三組試體之R值皆可達3.3以上。
- 考量試體與實際結構仍不盡相同, 切當樓層數為3時,結構塑性變 形與消能仍會集中於1樓,此時 韌性容量還是會略微下降,為求 保守,建議設計時R值取3.0。

ā.	韌性容量			
單一單	R-1*	3.62		
元	R-2*	3.35		
多單元	2x2	3.48		

^{*}為2018年台科大之研究。

62

大 綱

- 1. 前言
- 2. 試體設計及製作
- 3. 載重試驗
- 4. 結構分析參數
- 5. 結論

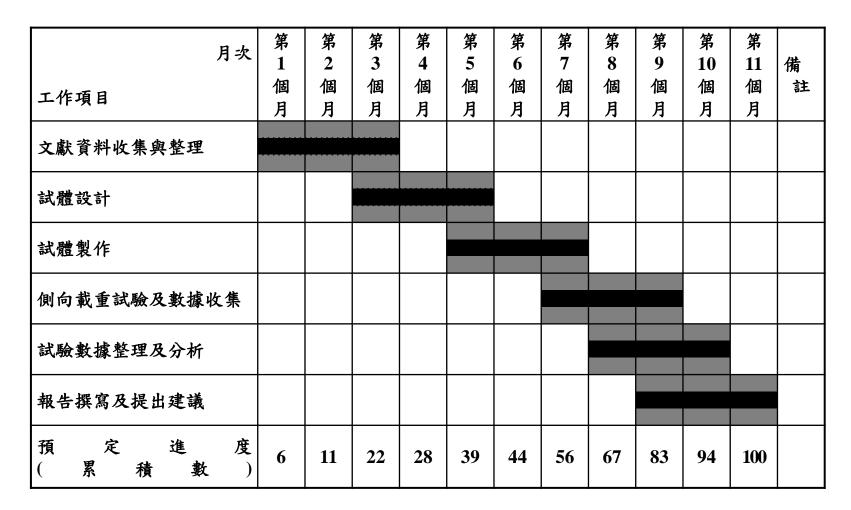
結論

在節省施工人力及及建造時間方面,概略的評估顯示:

- 1. 若國內每年興建之1~4層樓的房屋構造中有10%使用鋼管鋼網 牆系統,則可降低建造人力54%,估計未來每年可減少6,840個 人力需求。
- 2. 鋼管鋼網牆系統與傳統RC結構相比,可降低58%的建造時間, 有效提升施工速度且施工現場管理容易及使用性佳等優點,具 有相當高的發展潛力。
- 3. 目前鋼管鋼網牆系統與傳統RC工法相比,目前工程造價僅提高 7%,但未來若使用量提高後造價應該可以比傳統RC工法還低。

結論

依據試驗與分析結果顯示:


- 1. 根據單一單元、二層二跨及一層三跨之試驗結果,建立等值斜 撐分析方法,且將分析結果與試驗結果比較,發現所採用等值 斜撑分析方法進行鋼管鋼網牆結構系統之設計為一可行的方式。
- 2. 等值斜撐強度 $P_n = f_c$ '×A, 其有效面積A = td/7.7, t為牆體寬 度,d為牆體對角線長度,設計強度 $P = 0.65P_n$ 。
- 3. 水平鋼管與垂直鋼管連接可以採用簡易接頭或是直接銲接,採 用簡易接頭之結點垂直剪力強度 $P_{vn} = 149 \text{ tf}$,適用於RHS 100×100及RHS 200×100鋼管;採用銲接且水平鋼管斷面為RHS 100×100 之結點垂直剪力強度 $P_{vn} = 194 \text{ tf}$;採用銲接且水平鋼 管斷面為RHS 200×100估算其垂直剪力強度為 P_{vn} = 291 tf , 設 計強度 $P_v = 0.7 P_{vn}$ 。

結論

依據試驗與分析結果顯示:

- 4. 多單元鋼管鋼網牆構架分析結果顯示,系統中之臨界桿件皆為垂直鋼管。試驗數據顯示破壞模式為鋼管降伏之試體試韌性容量為3.35~3.62,以此建議結構設計時系統韌性容量R可取3.0。
- 5. 另外設計時需注意,雖然鋼管內有填充混凝土,但考量鋼管底部之混凝土填充品質較難控管,因此建議忽略鋼管內混凝土對強度之貢獻。
- 6. 鋼管鋼網牆系統之開發,乃基於模組化之考量,研究成果之應用需要在所設定之範圍內,在符合本報告所設定材料、桿件尺寸、單元尺寸等限制下,本報告提出一設計方法及一個設計案例供工程師參考,惟工程師設計時應視實際結構之構造自行判斷、選擇適當之設計方法。

研究進度

研究進度與預計進度相符。

參考文獻

- 1. 陳正誠、林曉芳, 2017, 「結構鋼管簡易接頭之受力行為及其在低矮樓 層街屋之應用」,國立臺灣科技大學營建工程系暨研究所碩士論文。
- 2. 陳正誠、林曉芳, 2018, 「低勞力需求之鋼管鋼網牆街屋結構系統」, 中華民國第十四屆結構工程研討會論文。
- 3. 陳正誠、林曉芳, 2020,「鋼管鋼網牆之試驗結果」,中華民國第十五 **屆結構工程研討會論文。**
- 4. 陳清泉、高健章、蔡益超、陳國顯,1984,「紅磚與磚牆力學特性之試 驗研究」,國立臺灣大學地震工程研究中心。
- 5. 高健章、陳清泉、蔡益超,1985,「磚牆加強之鋼筋混凝土構架耐震能 力試驗研究(二)」,國立臺灣大學地震工程研究中心。
- 6. 中華民國統計資訊網。
- 7. 內政部營建署,2001,「建築物耐震設計規範及解說」。
- 8. 內政部營建署,2001,「混凝土結構設計規範」。

