

111年科技補助計畫 期中簡報

坡地土砂觀測站效能提升規劃及資 料加值分析運用

計畫主持人劉格非 教授 報告

110年11月29日

固定式及行動式土石流觀測站

行政院農業委員會水土保持局基於職司山坡地 保育利用之責,自民國91年開始,陸續發展 土石流防災觀測科技,期能更加精進坡地土砂 災害之觀測科技研究及發展。

現有21站固定式土石 流觀測站儀器配置

開始建立固定式 土石流觀測站

開始建立崩 塌地觀測站

2010 設立行動式 土石流觀測站

2014

對9處觀測站進行 儀器調整評估

2019→2022驗證

土石流觀測站精進資 料加值分析(預警)

工作項目

- 1. 建立新站(含檢查所有資料加值分析系統運作)
- 2. 現地攝影機與地聲檢知器的檢定方式是否可用於特性不同的測站
- 3. 航照與無人機照片分析
- 4. 建立多測站之智慧防災系統

- (二)期末評核標準
- 1. 完成建構智慧型網站(包含神木土石流觀測站與研究場域測站等)
- 2. 觀測站之土石流事件流程完整分析

一、建立新站

四、建立多測站之智慧防災系統並完成英文系統

明霸克露橋

偵測到土石流或山崩 立刻無線發布避難警告 土石流 監測位置 土砂總生產量:1,107萬方

溪床總堆積量:713萬方

玉穗溪河岸崩塌

崩塌深度:8 m

土砂生產量:152萬方

面積:29公頃

玉穗溪大規模崩塌

崩塌深度:23.1m

土砂生產量:851萬方

面積:49公頃

荖濃溪河道堆積

堆積高度:4.5m 堆積量:311萬方

約1.8公里

可爭取最短 3分鐘避難時間

玉穗溪大規模崩塌堆積

堆積高度: 26.2m 堆積量: 529萬方 面積: 27.8公頃

匯流口沖積扇堆積

堆積高度:11.9m 最大高度:22.3m 堆積量:202萬方

玉穗溪溪床邊坡堆積

堆積高度:6.1m 堆積量:184萬方

玉穗溪河道侵蝕

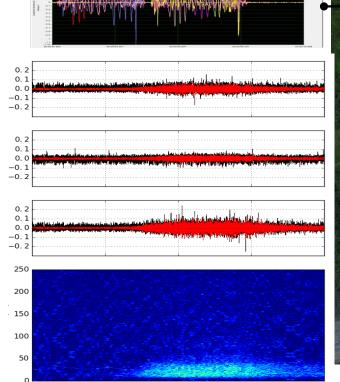
侵蝕深度:5.7m 侵蝕量:104萬方

2022/4/7

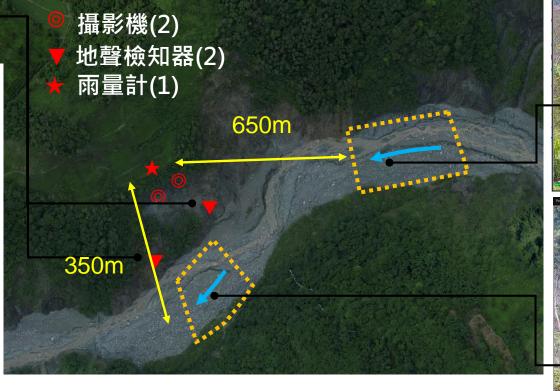
明霸克露橋監測預警系統規劃

地聲監測

捕捉**土方崩坍**訊號→即將危險


捕捉**土石流流過**的訊號**→即刻危險**

雙向訊號檢核 降低錯誤警報


0.5秒 確認警報!

攝影機監測

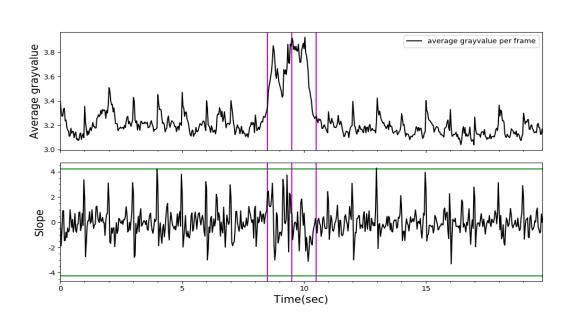
捕捉**土石流**,估計運移速度,發佈偵測警報→**即刻危險**

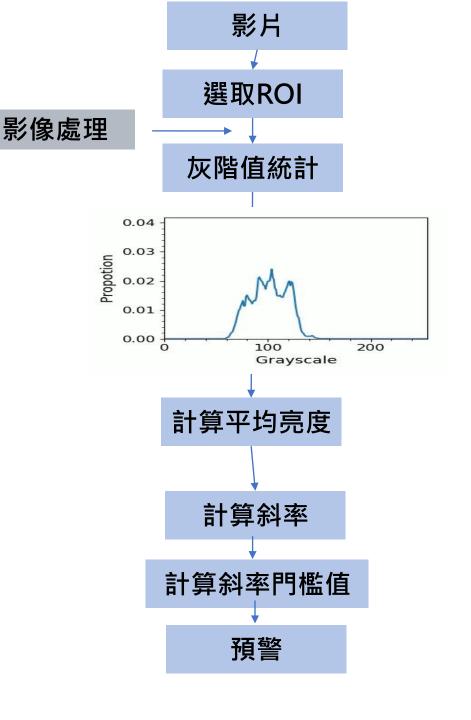
 $Time\ [min]$

攝影機視角

影像分析: 總灰階值法

玉穗溪新系統

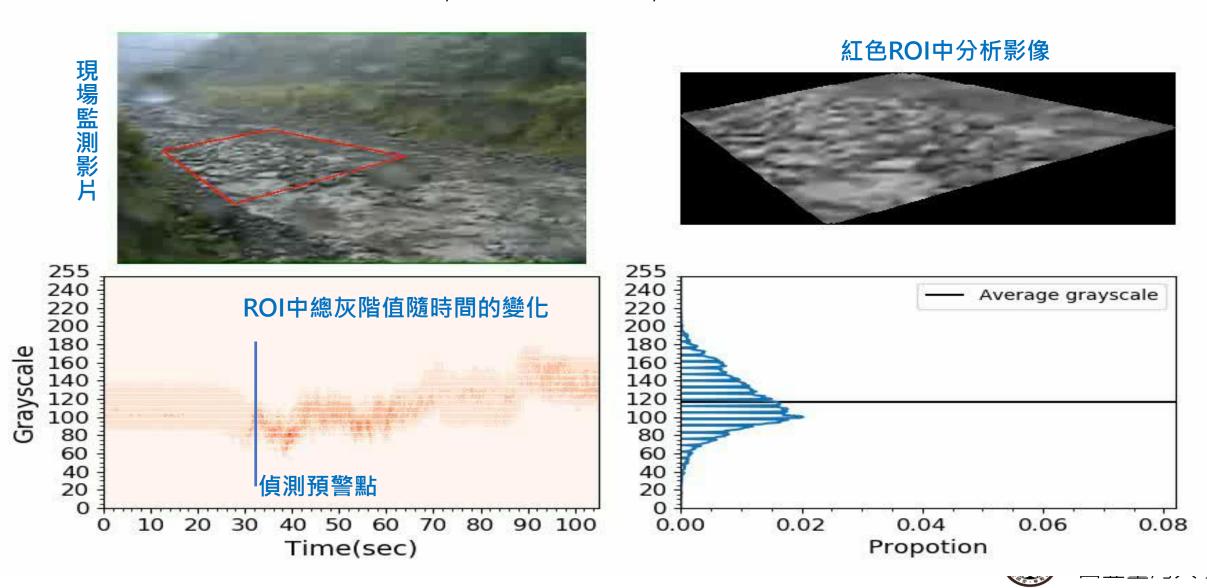

- 1.現場儀器資料僅傳回現場電腦
- 2 · 所有影像與地聲資料於現場分析
- 3 · 所有資料加值 A P P 安裝於現場
- 4.預警機制為自動,影像用總灰階值法,地聲用能量法
- 5 · 偵測到土石流時,
 - (a) 以蜂鳴器在下游預警(用無線電)
 - (b) 資料展示網頁
 - (c) 簡訊和line通知相關人員
- 6. 現場資料儲存(影像為低禎數),分析並可下載 (可存半年)
- 7. 事件發生後,資料另外存於儲存裝置中


0606所有儀器於現場裝設完畢

總灰階值原理

- ✓ t時間之平均亮度 $I^t = \sum_{i=0}^{255} i \times R_i^t$
- ✓ 平均亮度值 $S_{mean}^t = \sum_{frame=0}^{all\ frames} \frac{I^{frame+2} I^{frame}}{2\Delta t}$
- $\checkmark \Delta t = \frac{1 \, frame}{video \, fps}$
- I: 平均亮度
- i: 灰階值(i= 0 ~ 255)
- R_i : 亮度值i 所佔的比例(R_i = 0 ~ 1)

為濾掉高頻震盪雜訊,每一筆資料為固定長度 (10-30禎)資料之平均



敏督利颱風土石流 時間: 2004/7/2 16:40

偵測到時間,土石流抵達前1.2秒,下游預警區疏散時間32分鐘

地聲能量法結果

訊號取樣頻率 500 Hz

下層與上層鋼索高度分別為2.5 m 和 5 m

環境雜訊

土石流訊號

影片拍攝之 偵測目標 土石流前峰

4. 建立多測站之智慧防災系統並完成英文系統

土石流防災資訊網

中央氣象局全球資訊網

Debris flow monitoring system

玉穗溪土石流預警系統
≜ demo
建議使用 Chrome / Edge
登錄

S W C B GMAX2-FF

admin'

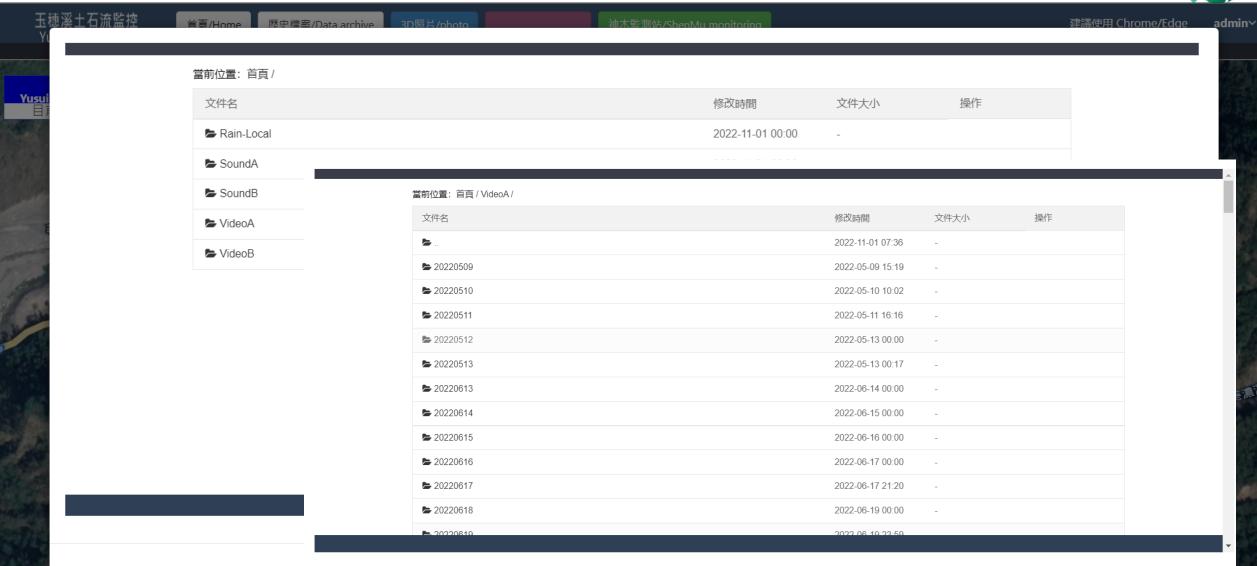
玉穗溪土石流監控 Yushui monitoring

首頁/Home

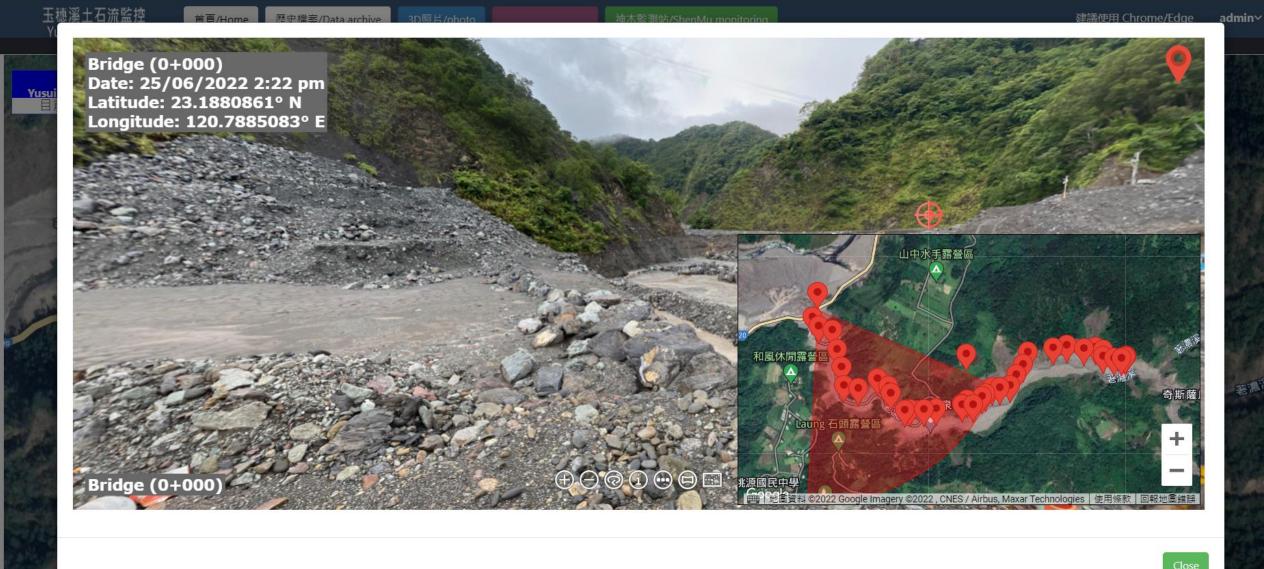
歷史檔案/Data archive

3D照片/photo

神木監測站/ShenMu monitoring


建議使用 Chrome/Edge

雨量圏 Precipitation 玉穗溪土石流即時預警 上游攝影機 地費A Yusui River Debris flow warning system 目前狀態 Status 正常 Normal **Upstream Camera** Geophone A (higher) 022-11-22 17:04:20 17:04:26 ■ 目前雨量 一 當日累積 17:45:36 15:50:24 16:19:12 16:48:00 17:16:48 電視溪 攝影機 地聲檢知器時域 畫面 中游攝影機 地聲B Geophone B (lower) Midstream Camera 022-11-22 17:04:21 攝影機分 17:04:26 地聲檢知器分析 析結果 Laung 石頭



3D 環場照

智慧型網站,自動執行預警與建議決策執行事項

- SINCE 1961 -

偵測方法建立模組,配合監測資料,發布預警

完成流程

平時: 偵測資料顯示(影像,地聲,分析)

警戒:預警條件達到 →通知相關人員(line+簡訊)

→執行預警措施(設備控制,廣播)

紀錄:事件結束分析→資料儲存於硬碟

優質・效率・團隊

系統安裝重要紀錄時間點

神木村

協力廠商只有分析資料 資料接收由逢甲完成 經由NATS交給系統分析

玉穗溪

協力廠商負責 監測儀器安裝 資料接收 資料分析

- 2022-04-02 專案起始開發
- 2022-04-19 完成雨量器讀取系統應用系統
- 2022-04-23 完成雨量器讀取系統第二階改版功能
- 2022-04-23 完成即時分析中控系統
- 2022-04-24 完成地聲讀取系統應用系統
- 2022-04-25 完成影像讀取系統應用系統
- 2022-04-27 水保局及公路局現場會勘
- 2022-04-29 準備蘇院長來的展示
- 2022-05-07 地聲影像資料圖取系統程式更新
- 2022-05-24 系統程式更新: 增加通知人員名單維護功能
- 2022-05-29台電電源可以使用,設備進場安裝
- 2022-05-31 設備安裝完成
- 2022-06-10 土石流報警機電池爆炸
- 2022-06-13 系統更新說明:影像讀取系統更新+Line 通知功能上線
- 2022-07-08 繳納中華電信ADSL裝設費用

- 2022-07-07 分析系統增加 OverWrite 偵測及防護因 OverWrite 狀況造成分析引擎的記憶池損壞 WCF
- 2022-07-11 即時分析圖表的記憶體控制優化,加強長時間運作
- 2022-07-13 Web 版即時監控狀態系統上線測試
- 2022-07-24 修正系統執行問題, 更新版本
- 2022-08-05 修整系統監控程序的執行問題增加穩定度
- 2022-08-15 系統看門狗增加細部作業參數,增加系統運作調整參數
- 2022-08-15 中華電信工班施工
- 2022-08-23 作業 WINDOWS OS 更新服務, 增加系統每週一淩晨 01 進行系統重新開機
- 2022-08-23 中電電信光世代網路進場
- 2022-08-27 即時監控的網頁查看系統更新,增加歷史資料可以透過流覽器進行下載
- 2022-08-28系統看門狗昇級,增加對多重分析結果的檢查以提高即時分析系統的穩定度
- 2022-08-29 系統看門狗系統異常偵測功能昇級
- 2022-08-30 網頁版面及文字調整適應手機可顯示
- 2022-08-31 水位局專案現場查核

2022-09-02 現場電源問題修復 (不正常關機造成檔案毀損)

2022-09-04 修正分析系統在讀取 ROI 某些狀況會有 Bug

增加Camera 讀取及存檔系統對不同設備的相容性

2022-09-06增加專用高速大量暫存檔的處理機制,提高硬體使用壽命

2022-09-07 解決監控輸出頻繁問題

2022-09-12 進行顯示網頁系統修改作業

2022-09-23 新版顯示網頁系統上傳更新

2022-09-30 現地參數檢定與測量

2022-10-01 進行顯示網頁系統修改

2022-10-05 顯示網頁系統修改上傳

2022-10-07 修改顯示網頁系統

2022-10-19 更新通知:修正分析系統增加分析引擎穩定度

2022-10-24 影像分析工具修正(斜率與峰值)

2022-10-27 網站英文修改

2022-11-02 修改監控網站部份功能無法執行

2022-11-04 公路局監視器廠商來借用網路通訊線路

全部工作大致所需要時間

工作大項	估計時間	
現場勘查	一個半月	
購買設備	一個月	
在室內準備與測試系統	兩個月	後續可以加快
現場裝設	一個月	
電源網路的協調申請	三個月	最無法控制
系統檢驗修正	兩個月	後續可以變快
現場參數校正	一個月	受限於地形險惡

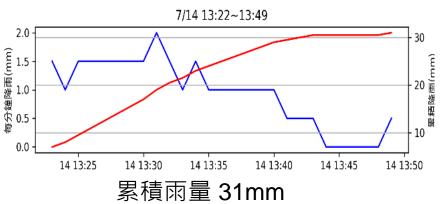
現場狀況

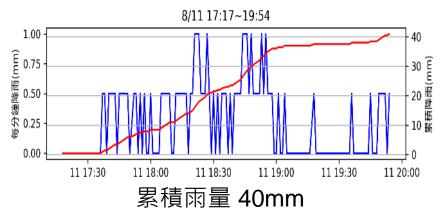
2022/6/25

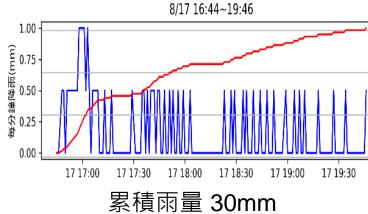
明霸克露橋起始點

沿路多處殘留土石流 前鋒遺跡

第一座壩只剩1公尺壩翼最高點



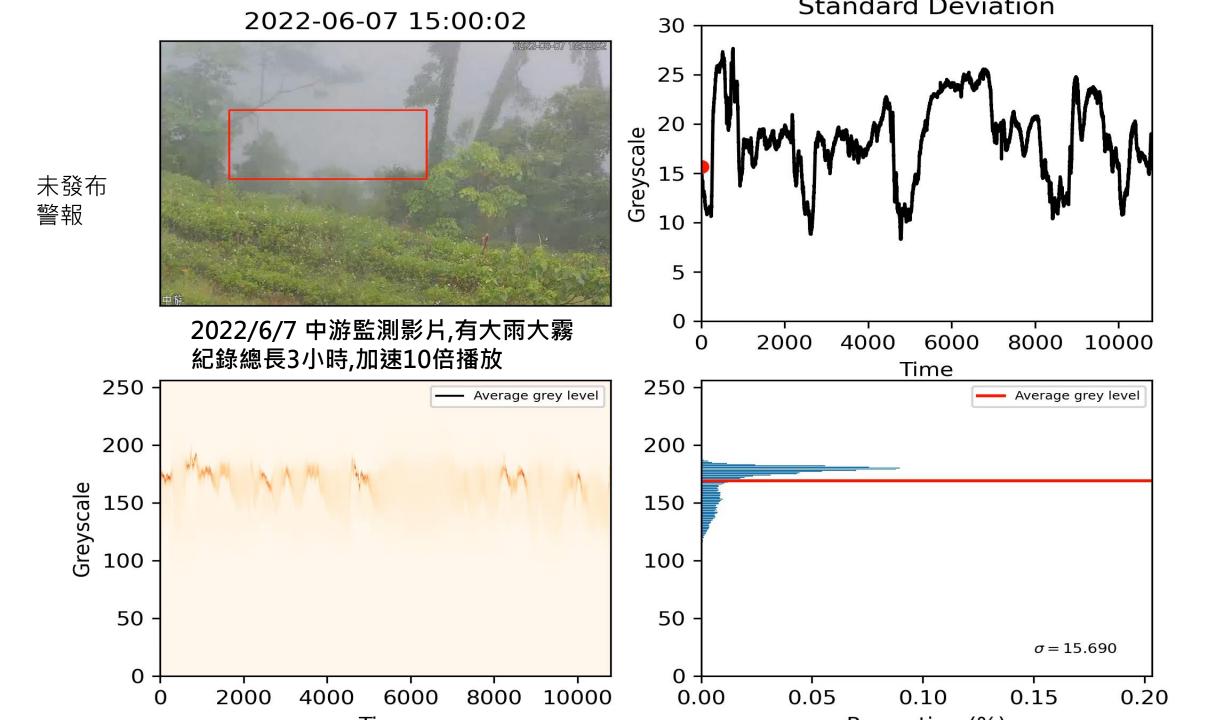

中游有非常長的超過**10**公尺的堆積層 有大雨應該會發生崩坍與土石流 目前監測系統會監測到並發出預警


但是持續小雨可能造成溪溝持續刷深與變寬 這種產生小規模泥流 就無法監測出來

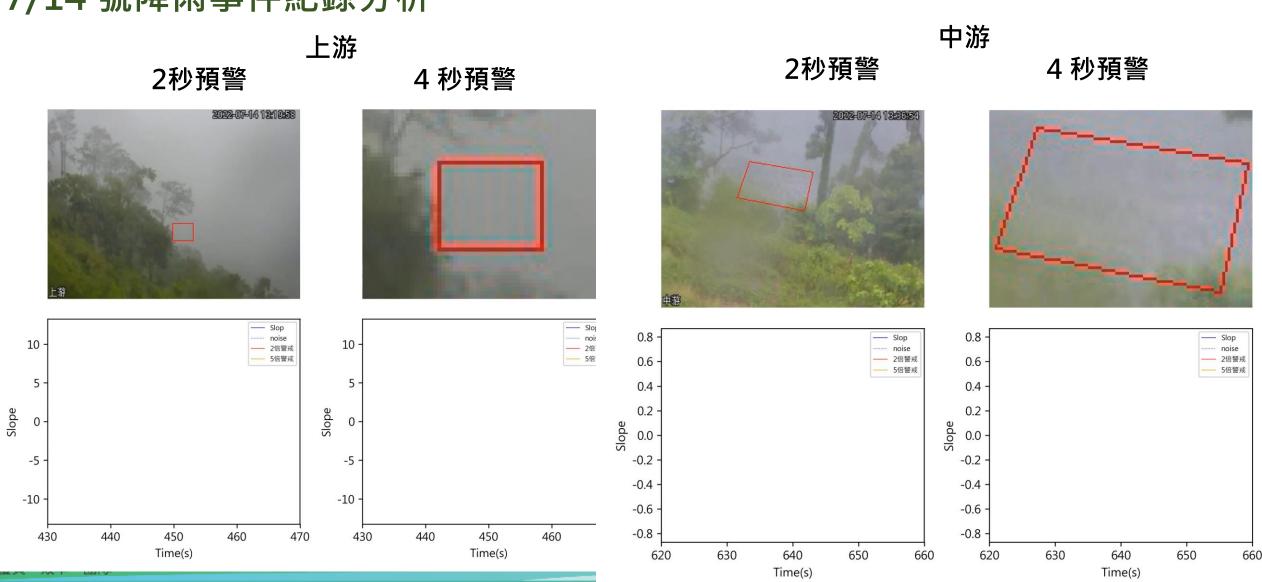
監測系統安裝完畢,沒有發生過大雨 最大三場累積降雨如下

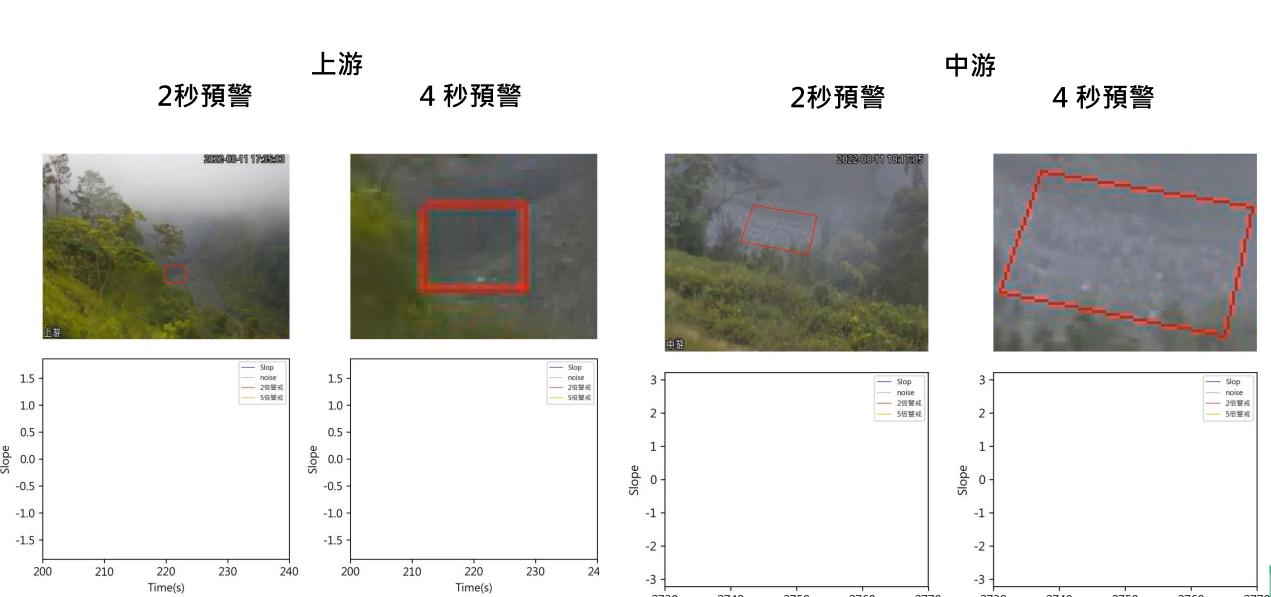
玉穂溪								
日期	2022/7/14		2022/8/11		2022/8/17			
位置	中游	上游	中游	上游	中游	上游		
	13:25:35	13:12:48	17:31:35	17:31:43	16:39:25	16:39:35		
時間	_	_	_	_	_	_		
	13:50:33	13:50:40	19:06:35	19:04:30	19:47:22	19:47:32		
fps	10	10	2	10	2	2		
總偵數	14400	21000	11400	57000	22560	22560		
ROI大小(pixel)	4167	661	4167	661	4167	661		
計算時間(灰階值、斜率)	00.03.36	00.05.20	00.05.57	00.27.48	00.13.32	00:11:53		
hr:min:s	00.00.00	00.00.20	00.00.01	00.41.40	00.10.02	00.11.00		

2022/6/7 土石流

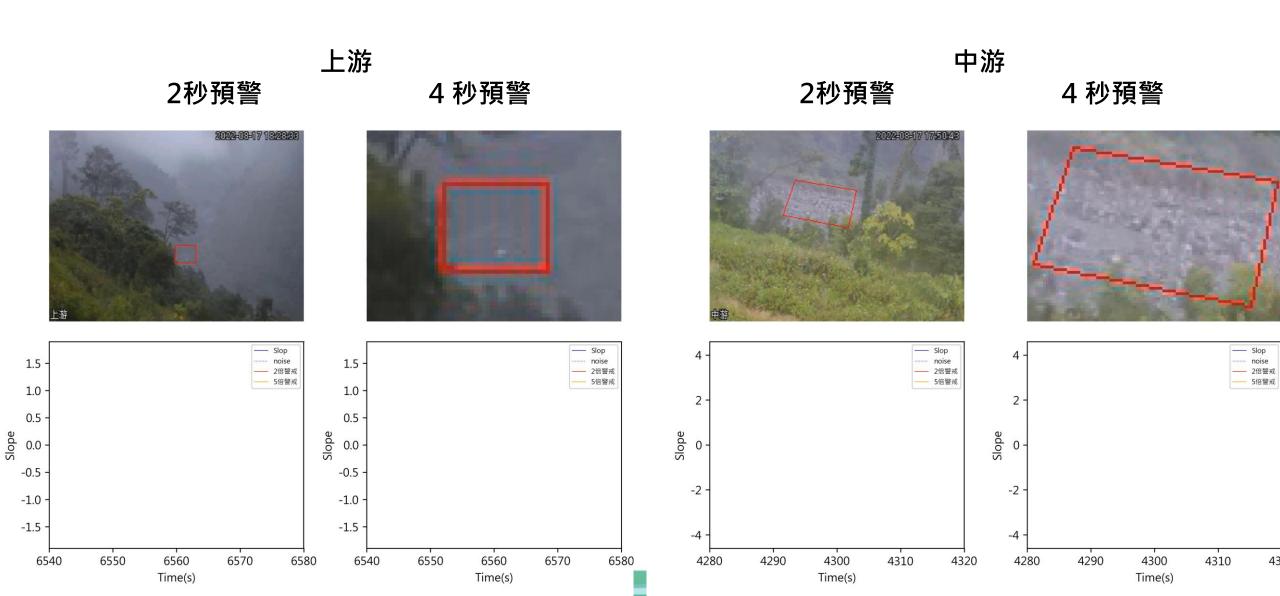

由新聞報導,公路局提供影片照片 公路局緊急封閉道路 因為河面距離鋼便橋僅5公尺

▲▼恐怖土石流又來了!明霸克露橋便道今晚緊急「預警性封閉」。(圖/公路總局提供)

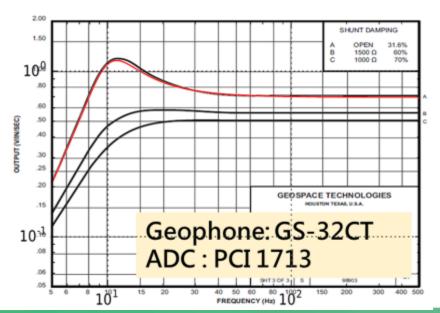

受鋒面影響,今日山區持續降雨,下午2點30分玉穗溪水位上升並有伴隨 混濁泥流,下午4點大量土石泥流流出。目前明霸克露橋便道路段以鋼便 橋形式通行,抗洪能力雖已有提升,但受到土石流持續下衝河道淤積,將



7/14 號降雨事件紀錄分析


8/11降雨事件紀錄分析

8/17 事件



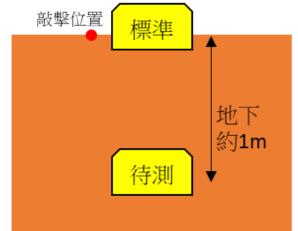
二、地聲檢知器與攝影機現場檢校

- (1)於現場進行地聲、攝影機之檢定,檢查是否參數與同型號 之設備相同土石流偵測預警方法驗證。
- (2) 進行地聲與攝影機檢校方法之實用性比對驗證

$$T(\omega) = \frac{G\omega^2}{\sqrt{a^4 - 2a^2\omega^2 + \omega^4 + 4\left(h_0 + \frac{G^2}{ab}\right)^2 a^2\omega^2}}$$

地聲檢知 器型號

優質・效率・團隊



Geophone B

Geophone A

玉穗溪地聲檢知器檢定

埋於地下1m的地聲檢 知器必須重新安裝 攝影機旁的地聲檢知器 非常準確

	地聲A			地 聲 B			
參數	G	а	h _o	G	а	ho	
誤差	100%	100%	100%	0.1%	2%	1%	

攝影機現場檢校程序

1. 缺陷像元:是否有壞掉的pixel,是否色素程度相

標準色板 緩慢在接近 鏡頭處(1m內) 左右來回移動

檢查每個畫素 如果有畫素不連續 且都在同一點 該點列為缺陷像元

- 1. 任何畫面都會受到環境光源影響而造成三原色灰階值不同
- 2. 環境可能有陰影造成灰階值變化
- 3. 等光源試驗,同一相機也會有敏感度或扭曲效果造成灰階值不同

時間	藍色	綠色	紅色
~6 秒			
~7秒		- ' ' ' ' '	
~8秒		- · · · .	•
~9 秒	• •		

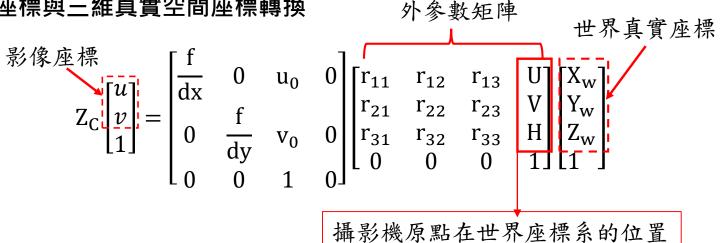
	藍色	綠色	紅色			
0~1 秒	19111 個	18622 個	14451 個			
0~2 秒	9464 個	7779 個	10374 個			
0~3 秒	5756 個	1799 個	8860 個			
0~4 秒	2333 個	534 個	6780 個			
0~5 秒	790 個	163 個	2396 個			
0~6 秒	330 個	39 個	277 個			
0~7 秒	41 個	20 個	14 個			
0~8 秒	5個	8個	2個			
0~9 秒	2個	6個	0個			
0~10 秒	0 個	1個	0 個			
	到第9秒時不合格點	到第10秒時不合格點	到第8秒時不合格點			
	(126, 360)	(56, 180)	(95, 505)			
	(150, 535)		(95, 509)			

檢測結果

神木村

中游攝影機:沒有問題

下游攝影機:5個畫素有問題 (同去年)


玉穗溪

三個攝影機:沒有問題

2. 影像幾何校正:

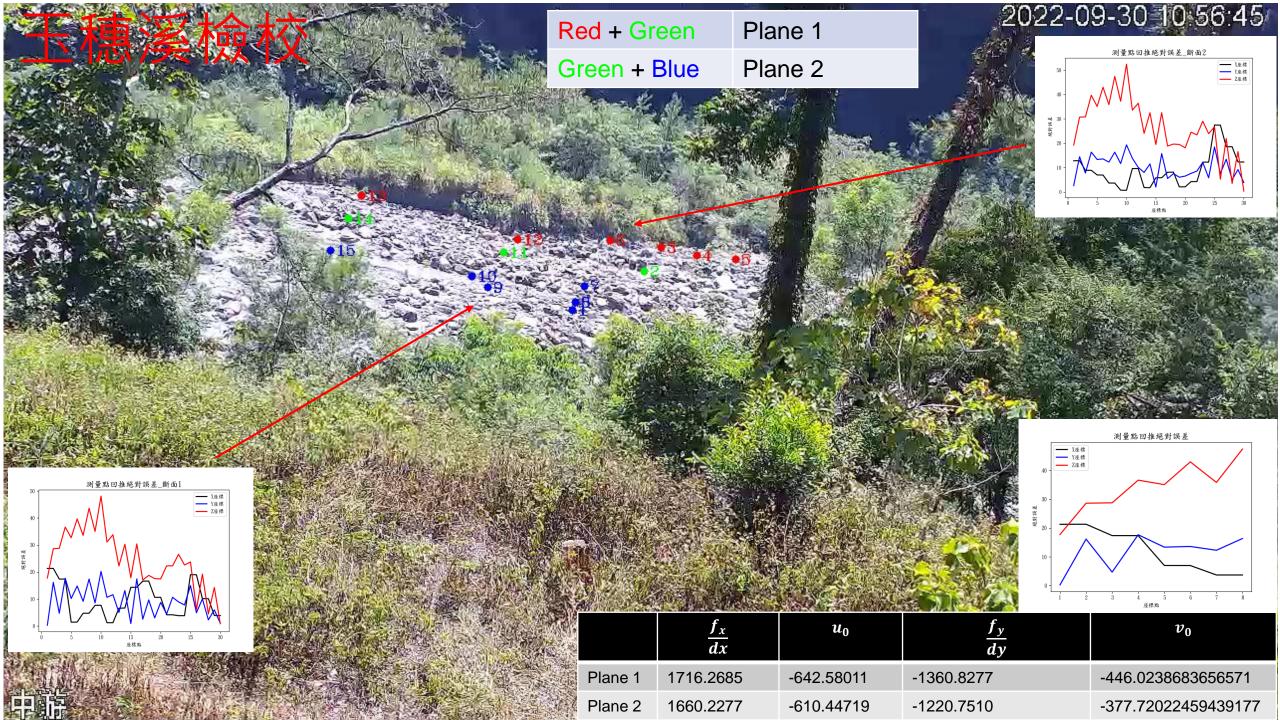
二維畫面座標與三維真實空間座標轉換

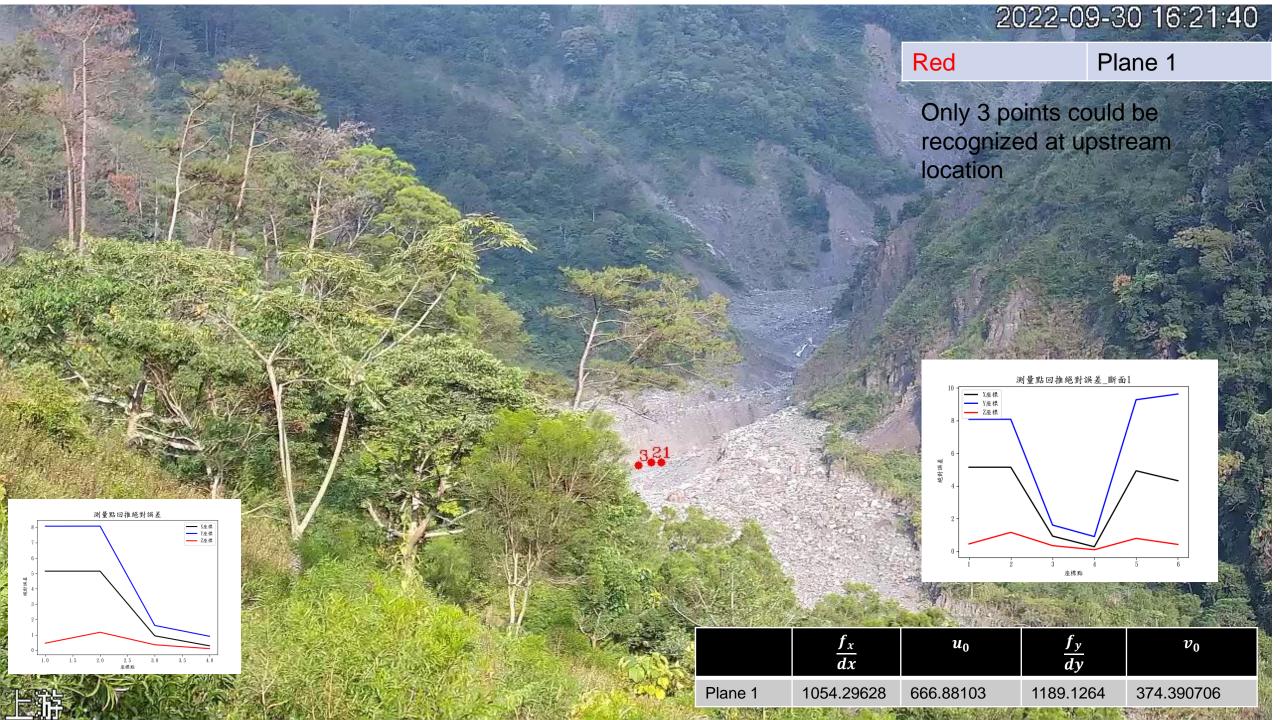
(u₀,v₀)為影像座標的原點(鏡頭光學中心)

dx、dy為感光元件長度除以x、y方向上像素數

f為焦距

Z。為圖像座標系原點至真實景物間的距離

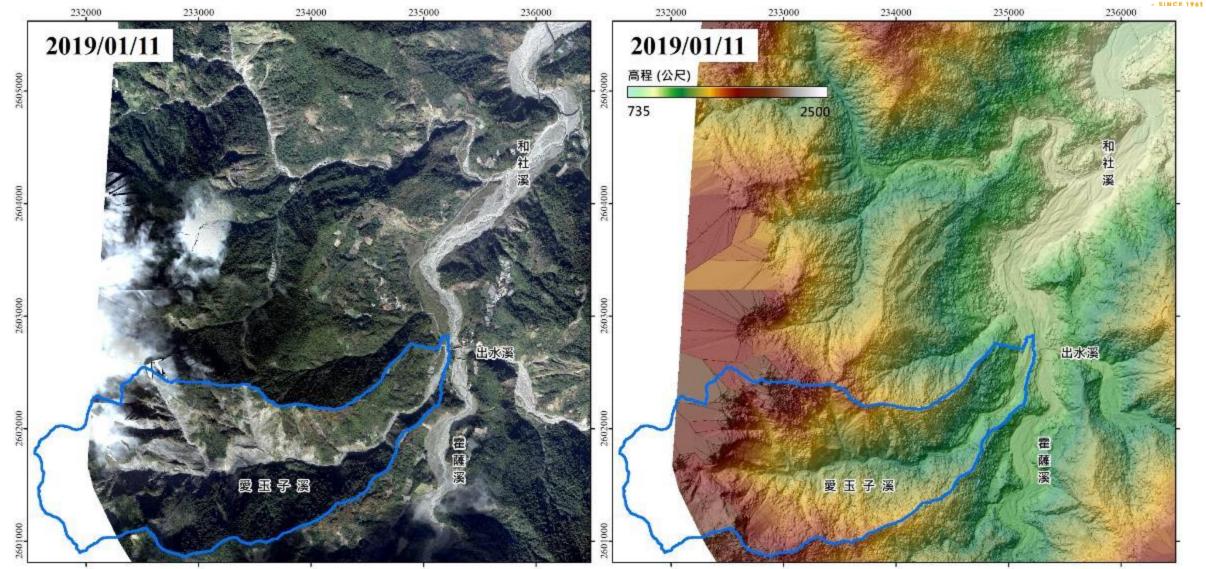

旋轉矩陣(世界座標與相機座標三軸夾角)


$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} \cos\theta_{\rm Z} & \sin\theta_{\rm Z} & 0 \\ -\sin\theta_{\rm Z} & \cos\theta_{\rm Z} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta_{\rm Y} & 0 & -\sin\theta_{\rm Y} \\ 0 & 1 & 0 \\ \sin\theta_{\rm Y} & 0 & \cos\theta_{\rm Y} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{\rm X} & \sin\theta_{\rm X} \\ 0 & -\sin\theta_{\rm X} & \cos\theta_{\rm X} \end{bmatrix}$$

$$\frac{f}{dx}$$
 \ u_0 \ $\frac{f}{dy}$ \ v_0

為待檢定的相機參數 帶入現場測量點Xw,Yw,Zw 與影像上的座標u,v 須誤差為零(檢定條件)

檢校完畢 攝影機即可產出有 物理單位數值


3. 航照與無人機照片分析

- (1) 持續分析神木站坡地與河川沖刷
- (2) 玉穗溪航照與無人機照片分析

運動恢復結構產生數值地表模型(DSM)

五穗溪崩坍與河道沖於

F o m t	玉穗溪	邊坡 (萬立方公	:尺)	玉穗溪河道 (萬立方公尺)			
Event	Erosion	Deposition	Net	Erosion	Deposition	Net	
2001/03 – 2002/02	-65.0	38.5	-26.5	-45.9	64.5	18.6	
2002/02 – 2003/04	-38.1	27.6	-10.5	-31.7	42.3	10.6	
2003/04 – 2007/01	-164.2	9.1	-155.2	-135.7	9.0	-126.7	
2007/01 – 2008/08	-91.5	18.0	-73.5	-55.6	23.3	-32.3	
2008/08 – 2009/11	-1,200.5	316.7	-883.8	-127.7	275.4	147.7	
2009/11 – 2013/02	-407.6	76.1	-331.5	-146.8	22.7	-124.1	
2013/02 – 2015/10	-108.4	28.0	-80.4	-24.2	12.6	-11.6	
2015/10 – 2019/01	-58.5	38.6	-19.8	-42.2	23.1	-19.1	
2019/01 – 2021/01	-652.7	126.8	-525.8	-38.2	45.1	6.9	
2021/01 – 2021/08	-1,811.4	527.1	-1,284.3	-135.1	153.7	18.6	
Total (萬立方公尺)	-4,597.9	1,206.6	-3,391.3	-783.1	671.7	-111.4	

愛玉子溪邊坡與河道土砂變動量計算

		薆	玉子溪邊坡		愛王	愛玉子溪 (萬公噸)			霍薩溪 (萬公噸)	
Event	土壤沖 蝕 [萬公噸]	Erosion	Deposition	Net	Erosion	Deposition	Net	Erosion	Deposition	- SINCE 1961 - Net
19991210 – 20010802	1.0	124.4	39.9	-86	234.1	17.3	-217	71.1	161.8	91
20010802 – 20030302	3.4	65.0	29.6	-39	49.0	31.8	-17	196.2	4.0	-192
20030302 – 20040807	4.5	174.6	66.4	-113	45.7	49.5	4	41.3	60.7	19
20040807 – 20051128	3.3	107.7	79.1	-32	40.7	26.6	-14	60.4	112.7	52
20051128 – 20070126	5.4	46.0	38.0	-13	32.7	68.8	36	104.2	43.6	-61
20070126 – 20080803	4.4	165.7	20.5	-150	115.6	2.7	-113	34.1	54.0	20
20080803 – 20080826	3.3	68.7	17.5	-54	12.2	36.4	24	58.5	13.3	-45
20080826 – 20091121	9.9	2388.7	842.5	-1,556	380.8	131.6	-249	182.6	693.3	511
20091121 – 20130603	2.0	702.9	90.8	-614	117.1	97.5	-20	151.2	142.4	-9
20130603 – 20140217	4.8	121.4	89.0	-37	24.4	102.8	78	37.2	121.3	84
20140217 – 20171007	2.1	211.0	76.8	-136	44.2	73.9	30	154.1	33.7	-120
20171007 – 20180529	1.5	71.3	30.2	-43	28.3	14.7	-14	61.5	18.6	-43
20180529 – 20190111	0.8	53.7	35.8	-19	14.6	39.2	25	18.5	70.2	52
20190111 – 20200508	3.6	468.5	16.3	-456	113.3	11.3	-102	64.7	61.7	-3
20200508 – 20201020	1.2	27.6	18.7	-10	18.6	13.5	-5	30.0	12.1	-18
20211020 – 20210908	3.4	26.9	12.5	-18	21.6	17.8	-4	49.0	25.9	-23
Total (m ³)	54.4	4797.2	1491.0	-3,361	1293.0	735.5	-557	1314.5	1629.4	315

結論

- 1. 觀測站設備已經安裝完畢,電與網路也都接好,整個過程約需11個月
- 2. 智慧網站運作正常,包含資料分析展示,自動預警等功能
- 3. 預警經由line, 簡訊還有無線電操控設備或播音等途徑
- 4. 目前結果證實在大霧與大雨之下,總灰階值法仍然不會因此誤發警報
- 5. 現場設備檢校完成,可以產出深度與速度等資料
- 6. 因為觀測設備距離溪流太遠,一個畫素代表的距離太長,因此必須調整 偵測最短時間到4秒。其他系統參數不需要調整

報告完畢敬請指教