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摘要 

近年來台灣有許多橋梁在颱風侵襲期間因為暴漲的溪水或土石流沖蝕，導致

橋面板的陷落及橋體的損壞，造成人命傷亡與經濟損失。當務之急除了針對現有

橋梁進行整體安全性評估之外，將來更需要發展準確與可靠的橋梁監測系統，對

橋梁的安全性進行即時的監測，並在橋梁損害發生與倒塌之前提供預警訊息，以

減少人命與經濟財產的損失。本研究利用無線傳輸技術，開發以振動量測為基礎

的橋樑監測平台，並採用遞迴隨機子空間識別法(Recursive Stochastic Subspace 

Identification, RSSI)對收集之量測訊號進行分析，以及開發橋梁損壞指標，以達

到橋梁監測與預警之目的。該監測平台已成功應用至實驗室縮尺橋梁模型試驗， 

以及現地宜蘭牛鬥橋微振動的長期監測。 

關鍵詞：無線傳感、系統識別、結構健康診斷、損壞評估 

Abstract 
Recently during the typhoon season there were several bridges were collapse due 

to heavy storm in Taiwan. As well as the overall investigation of bridge capacity and 

safety, it is necessary to develop a health monitoring system to monitor bridge safety 

and offer early warning while bridge damage and before it collapses. The objective of 

this study is to develop a reliable bridge structure health monitoring system directly 

from its vibration measurements under operation conditions by wireless sensing 

network to monitor bridge safety. Through the output-only measurements, on-line 

system identification algorithm and damage detection methodologies are developed. 

Verification of monitoring system and these methodologies is conducted through the 

large-scale lab test of bridge scouring and long-term field test of Nu-Do Bridge at 

Yilan. 
Keywords ： wireless sensing network, system identification, structural health 

monitoring, damage detection 
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1. INTRODUCTION 

Recently during the typhoon season several bridges collapsed due to heavy storm 
in Taiwan. Bridge was designed with very strong pier in Taiwan and it is impossible to 
have damages caused by the direct impact of flood (except the severe debris flow). 
The major reason for bridge collapse during typhoon and flood is the bridge scouring 
and this scouring may empty the foundation soil and cause the reduction of bridge 
bearing capacity. There are over 150 bridges in Taiwan have this kind of potential 
damage. Therefore it is necessary to develop a structural health monitoring system for 
bridge to monitor bridge safety and offer warning message to avoid loss of life. 

The objective of this study is to develop a reliable structural health monitoring 
system for bridge based on its vibration measurements under operation conditions. 
Through the output-only measurements, on-line system identification algorithm and 
damage detection methodologies are developed to monitor bridge safety. Verification 
of these methodologies through the large-scale lab test of bridge scouring and 
long-term field test of Nu-Do Bridge at Yilan is conducted. Based on the data 
collected from the experimental scouring test of bridge structure, the features of 
bridge vibration for damage early warning are investigated. 

2. EXPERIMENTAL SETUP OF BRIDGE SCOURING TEST 

A four span bridge model with simply supported girder on each pier was 
constructed to across a flume of width 4.0 meter in the hydraulic lab. The span length 
is about 1.0 m. The sketch and the dimension of this bridge are shown in Figure 1. 
The bridge piers are embedded in sand with depth of 30 cm. 12 velocity sensors are 
deployed along the bridge deck to collect the vibration signal of the bridge during 
scouring process in transverse direction (along stream line). Photos of the bridge 
during and after test are shown in Figure 2. Velocity response data of the bridge 
during scouring process are collected. The VSE-15D sensor is used and it is a servo 
velocity meter produced by Tokyo Sokushin Co., Ltd. This sensor is very sensitive to 
detect the low level vibration motion and the linear range (0.2Hz~70Hz) is suite for 
SHM applications. Data acquisition system collected the velocity response of the 
bridge from all twelve sensors with sampling rate of 200 Hz. Camera was also 
installed in each bridge pier to observe the scouring phenomenon. Figure 3 shows data 
from sensor node #2 and node #9, and the scouring depth from the observation. The 
total run time on this bridge scouring test is 200 min (12,000 sec). All the test setup 
will be good for on-line monitoring of the bridge structure. 

3. ON-LINE SYSTEM IDENTIFICATION METHODOLOGY 

The recursive stochastic subspace identification (RSSI) algorithm is used for 
conducting operational model analysis through output-only measurements. A new 
RSSI algorithm has been proposed to avoid the use of singular value decomposition 
[1]. This algorithm consist of two steps: (1) update the LQ decomposition; (2) update 
the column space of extended observability matrix. The first step implies that the LQ 
decomposition needs to be updated as long as there is a new set of data provided. The 
second step on updating algorithm was proposed how to update the LQ decomposition 
when appending only one column to block Hankel matrix. To speed up the 
computation for on-line and almost real time computation, an advanced algorithm to 
update the LQ decomposition when appending more than one column to block Hankel 
matrix is proposed. Through this process there is no need to conduct the LQ 
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decomposition on the new Hankel matrix for each recursive procedure which can 
reduce the computation time to extract the system dynamic characteristics. Detail 
about it can be found in reference [2].  

It is important to note that to extract the system dynamic characteristics from the 
observation matrix, distinguish the true modes from the noise modes becomes a very 
critical issue. The system order n  based on the singular value decomposition (SVD) 
of observation matrix 

iΟ  was first determined. Through the use of singular value 

decomposition (SVD) the system order n can be determined from the singular value 
greater than the assign value. Then output modal accuracy correlation (OMAC) and 
weighted phase error (WPE) procedures can sequentially be used, and the true modes 
can be distinguished from the noise modes [3]. Figure 4 shows the identified 
time-varying system natural frequencies of the bridge structure by considering all the 
measurements from the deck to form the data Hankel matrix for RSSI. It is observed 
that the change of system dominant frequencies in relating to the scouring depth and 
the pier settlements is closely related. It is important to point out that prior to the 
t=7800 sec (significant settlement at pier No.3) the change of system dominant 
frequencies can be observed. 

4. DAMAGE DETECTION AND LOCALIZATION 

Different from the detection of time-varying system natural frequencies, more 
significant features which can not only identify the damage but also detect the damage 
locations need to be explored. Through vibration-based monitoring data the on-line 
damage location was investigated.  

4.1 Application of Cross-correlation Function Amplitude Vector 

    To avoid the limitation of the model-based damage detection techniques and 
considering the need of on-line damage detection, the concept of cross correlation 
analysis can be used. One simple approach is to test the cross-correlation from two 
measurements at the same time. Consider two random signals the correlation, 

)()( txandtx ik , the correlation coefficient between these two signals is defined as: 
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where “T” is the time window selected for estimating the correlation coefficient. It is 
believed that for an intact structural system the correlation coefficient kj  between 

two measurement nodes, k and j, should be higher than the damage structure. Suppose 
more than two measurements are taken, the concept of cross correlation function 
amplitude vector (CorV) of the responses of a structure can be used [4]. It is defined 
the CorV as: 
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Since that the CorV is a vector, so it can be normalized as follows: 
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It is believed that the correlation coefficient between the measurement locations 
)()( txandtx ik in a structure should be close to one if the structure is not damage. 

Otherwise, the correlation coefficient will be low if damage occurred in the structure. 
In order to identify and quantify such a damage that occurred in the structure the 
correlation between two CorV’s is defined: 
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where CorV (j) and CorV*(j) indicate the correlation coefficient of two different 
state, one is the reference state and other is the damaged state (or data calculated from 
different time period to express the different situation to the reference state). Higher 
CVAC value indicates higher correlation between the two states.    
    From the monitoring data of bridge scouring test, first, using Eq.(1), the 
correlation coefficient between two measurement locations is calculated. It is assumed 
that data from the sensor location No.1 is considered as the reference measurement. 
For a fix time window the correlation coefficient between the monitoring data from 
the reference location and the other measurement location can be generated. 
Correlation coefficient with moving time window of 20.0 sec, is generated and shown 
in Figure 5. It is observed that a significant drop of correlation coefficient with respect 
to the reference measurement location (sensor No.1) was observed at time t=7800 sec. 
which is in consistent with the results from time-frequency analysis. the abnormal of 
correlation coefficient was also observed between t=6000 sec and t=7800 sec. Based 
on Eq.(5) CVAC was also calculated with respect to different reference data 
(measurement location). Figure 6 shows the calculated CVAC as a function of time by 
considering two different sensing nodes as references. A moving time window with 
time window of 20 sec was used. The first time window set of the data will be used as 
the undamaged set of data (or reference). From CVAC value one can detect the 
abnormal change of CVAC starting at t=6000 sec, which was identified as the prior 
information (or early warning message) to the significant change of CVAC which 
occurred at t=7500 sec. No matter which location was selected as the reference sensor 
node the CVAC value can still detect the damage. It is important to note that the 
CVAC can provide an early warning message before the significant change of the 
system dynamic characteristics (such as the dramatic drop of system dominant natural 
frequency).  

4.2 Application of Proper Orthogonal Decomposition (POD) 

    Proper orthogonal decomposition is a procedure for extracting a basis for a 
modal decomposition from an ensemble of signals. If the response signal )(tqk of a 

discrete dynamic system with m degree of freedom (d.o.f.) are sampled n times and if 
the matrix Q is defined as 
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Then the proper orthogonal modes are the eigenvector of   T

n QQG 1 , and the 
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corresponding eigenvalues are the proper orthogonal values. It had been proved that 
POMs are related to the vibration eigenmodes in some cases. Therefore, the POD 
should be an alternative way of modal analysis for extracting the mode shapes of a 
dynamic system. The POD was applied to the dynamic response data collected from 
the measurements of the bridge scouring test. Figure 7 shows the calculated 
time-varying first and second eigenmode. To evaluate the change of eigenmode along 
the time sequence, the initial calculated eigenmode was selected as the reference one; 
and then the root-mean-square error of the difference between the reference 
eigenmode and the eigenmode calculated from different time window is generated, as 
shown in Figure 8. It is observed that the abrupt change of time can be identified. 

4.3 Damage Detection from Novelty Analysis 

Different from the CVAC analysis, to conduct the structural damage diagnosis, 
based on the undamaged data the structural system matrix was estimated as a 
reference state. First, the reference data set was collected and the SSI algorithm was 
applied to estimate the undamaged state of the structural system. Based on the 
reference data set (the 1st initial data set is assumed as the reference data), the SSI 
method is applied to identify the undamaged system transition matrices kk /1Φ which 

can be computed by exploiting the shift structure of the extended observability matrix. 
The novelty analysis on system’s dynamic responses is used to determine the 

bias of the predict responses if the system significantly deviates from initial baseline 
condition. The idea is to examine if the Kalman prediction model identified from the 
reference state data can be applied to newly measured data. Residual error can be 
estimated by comparing the predicted responses with the measured ones. The k-step 
state vector and the corresponding prediction error are calculated as: 

                            kkkkkk XMYYYe ˆˆ                   (7) 

From the prediction error vectors ke 	 at any k-th sampling point, the Novelty index 

(NI) is defined as either Euclidean Norm or Mahalanobis Norm [5]: 

Euclidean Norm:    k
E
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Mahalanobis Norm:  k
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The prediction procedure is performed using the data from the reference and actual 
states of the structure respectively. In the absence of damage, the level of prediction 
errors should remain unchanged. Otherwise, the Novelty index will change 
significantly for the damage case. Besides, the outlier statistical analysis, such as 
mean and standard deviation of NI, can also give a quantitative assessment of 
damage. 

In Novelty analysis the identified system transition matrix needs to be estimated 
in advance, and the ordinary Kalman filter can be used to predict the state. The 
Kalman filter, in estimating the state consists of two estimates of the state 1kX : (1) a 

predicted estimate kk /1
ˆ

X  of the state 1kX  based on information up to the time 

tkt   (consisting of observations kYY ,,1  ); and (2) an update estimate 

1/1
ˆ

 kkX which is obtained at time tkt  )1(  when a new measurement 1kY  is 

observed. For damage estimation the difference between the predicted estimate of 

state vector, kkkk XΦX ˆˆ
/11    and the measurements is calculated. Recursive 

processing of the measurement data is applied through compute the predicted state 
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and predict the observation 1kY and compute the update state. For damage 

assessment only the predicted measurements are used, the computed update state is 
only for the estimation of Kalman gain and the prediction error covariance.  

To perform the Novelty analysis using the response measurement of bridge 
during scouring process, signals collected from all sensors (12 sensing nodes) are 
collected to form the Hankel matrix with dimension of ]79001200[  . The time 
window is set to 40 sec. and with moving window of 40 sec. the first time segment 
will be used as the undamaged case. Figures 9 show the plot of the mean value of 
Euclidean Norm from each window was calculated from sensor node No.2 and No.9 
respectively. It is observed that the mean value of Norm for each time window 
increase significantly at t=6000 sec. (particularly for data from sensor No.9 node) 
which was identified before the significant change of system dominant frequency. 
Comparison among the results from RSSI, Novelty analysis and the vertical 
deformation measurement at Pier No.3, one can detect the abnormal features from the 
vibration measurement before the significant settlement of bridge pier occurred. This 
Novelty analysis can also be used for early warning index. 

4.4 Singular Spectrum Analysis for damage detection and early warning 

The use of singular spectrum analysis is discussed as an alternative to traditional 
digital filtering method. Its usefulness has been proven in the analysis of climate and 
geophysical time series. SSA procedure consists of four steps: (1) embedding, (2) 
singular value decomposition (SVD), (3) grouping, and (4) reconstruction. The detail 
description of each step is shown in formal terms [6]: 
    With the concept of moving window (window length=40 sec) the data Hankel 
matrix was formed. This analysis can be done either for each sensing node or from all 
recorded sensing nodes. Through SVD the on the data Hankel matrix and eigenvalues 
were calculated. Figure 10(a) and 10(b) shows the difference between the first two 
largest eigenvalues from Node 2 and Node 9 measurement. This figure shows that 
prior to the significant settlement of the bridge pier No.3 at 7=7800 sec, the distinct 
feature of the difference between two largest eigenvalues can be identified (at about 
t=6000 sec). This feature can be served as an index for early warning. This difference 
on the first two largest eigenvalues can also be calculate from all set of measurements 
instead of using data from a single sensing node, as shown in Figure 10(c) (plot in log 
scale). Through the reconstruction process of signal in SSA by using only the first two 
largest eigenvalues, comparison between the original signal and the reconstructed 
signal was made. The reconstruction is using the moving window technique by 
selecting the time window of 40 sec and with moving window of 40 sec. The size of 
the Hankel matrix is set to 6007951. The root-mean-square (RMS) error between the 
reconstructed and recorded signal is plotted and shown in Figure 11. It is observed 
that the RMS error of the sensor signal from node 9 shows a significant change 
(around t=5800 sec) before the large settlement occurred. This indication can also 
provide an early warning index. 

5. FIELD EXPERIMENTS 

    Long-term ambient vibration data of Nu-Do Bridge at Yilan is collected in order 
to validate the proposed methodologies. Wireless communication system for data 
transmission is used in this experiment, as shown in Figure 12. On Sept. 19, 2010, 
Fanapi typhoon invading Yilan area and significant rainfall was observed in the 
northern part of Taiwan. Figure 13 shows the photo of the bridge in normal weather 
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condition and in Fanapi typhoon period. The vibration response of the Nu-Do Bridge 
is also collected during the Fanapi typhoon strike. Application of RSSI to the 
measurements is conducted before, during and after the flood period by using sensor 
node D5H and D14H. Time-varying system natural frequencies were observed from 
the data at sensor node D14H which was close to the main river course, as shown in 
Figure 14. Figures 15 show the damage detection analysis by using Novelty Index and 
SSA. It is clearly observed that all these indices can detect the change of abnormal 
condition from the measurements. 

6. CONCLUSIONS 

Development of structural diagnostic approaches, in-service monitoring of 
structures with sensor networks may serve an important tool to identify the system 
modal parameters automatically and evaluate operational health of structures during 
normal operation condition. Damage detection algorithms depend on the accuracy of 
the modal parameters estimates and the success of on-line structural health monitoring 
and damage detection on feature extraction from response data. The main objective of 
this study on structural health monitoring (SHM) for bridge structure during scouring 
process is to identify the features from the in-situ operational condition and to detect 
the changes when damage occurred. Recursive Stochastic Subspace Identification can 
be applied for the identification of time-varying system frequencies. With suitable 
selection of model parameters one can conduct these analysis in almost real time 
analysis.  

As for damage detection and early warning, distinct feature will be extracted 
from measurements before the severe damage occurred. Four methods are proposed in 
this study. Through the experimental study on bridge damage caused by scouring in 
the laboratory, the time-varying dynamic characteristics and the damage features of 
the bridge can be identified. It is possible to detect the abnormal situation (or features) 
from the response measurements before the significant damage occurred. 
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Fig.1: Sketch and dimension of the bridge test specimen 

 

   

(a) during scouring test           (b) after scouring test 
Fig. 2: Photos of the bridge test specimen 

 

 

 

 
Fig. 3: Recorded velocity response from sensors at node 1 and node 9, and 

observation of scouring depth from each pier 
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Fig. 4: Identified time-varying system natural frequencies using RSSI algorithm 

 

 
Fig. 5: Correlation coefficient with respect to sensor location and time 

 

 
                   (a)                              (b) 

Fig. 6: Plot of CVAC with respect to time; (a) consider sensor node No.1 as a 
reference, (b) consider sensor node No.6 as a reference 

 

 
Fig. 7: Calculated 1st and 2nd eigenmode from Proper Orthogoanl Decomposition. 
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Fig. 8: Root-mean-square value of the difference between reference eigenmode and 

the eigenmode calculated from different time window. 
 

 
                   (a)                             (b) 
Fig. 9: Mean value of time-varying Euclidean Norm; (a) response at Node 3, and (b) 

response at Node 9. 
 

 
                       (a)                       (b) 

 
  (c) 

Fig. 10: Difference between the 1st and 2nd eigenvalue-ratio from Singular Spectrum 
Analysis of the measured response at (a) Node 2; (b) Node 9; (c) All Node. 

 
 

 
Fig. 11: Plot of RMS error between the measurement and the prediction using the 

reconstruction (from the two largest eigenvalues) wave forms of SSA. 
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Fig. 12: Wireless data communication setup for field ambient vibration 

measurements. 
 

 
Fig. 13: Photos of the Nu-Dow old bridge before and during the typhoon period. 
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Fig. 14: Identified time-varying system natural frequencies from sensor nodes of D5H 

and D14H before, during and after the typhoon period. 
 

 

 

 
 

Fig. 15: Damage detection analysis by using D5H (Node 5) and D14H (Node 14) data 
of normal and abnormal condition during typhoon strike 
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