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Abstract

Recently during the typhoon season there were several bridges were collapse due
to heavy storm in Taiwan. As well as the overall investigation of bridge capacity and
safety, it is necessary to develop a health monitoring system to monitor bridge safety
and offer early warning while bridge damage and before it collapses. The objective of
this study is to develop a reliable bridge structure health monitoring system directly
from its vibration measurements under operation conditions by wireless sensing
network to monitor bridge safety. Through the output-only measurements, on-line
system identification algorithm and damage detection methodologies are developed.
Verification of monitoring system and these methodologies is conducted through the
large-scale lab test of bridge scouring and long-term field test of Nu-Do Bridge at
Yilan.

Keywords : wireless sensing network, system identification, structural health
monitoring, damage detection



1. INTRODUCTION

Recently during the typhoon season several bridges collapsed due to heavy storm
in Taiwan. Bridge was designed with very strong pier in Taiwan and it is impossible to
have damages caused by the direct impact of flood (except the severe debris flow).
The major reason for bridge collapse during typhoon and flood is the bridge scouring
and this scouring may empty the foundation soil and cause the reduction of bridge
bearing capacity. There are over 150 bridges in Taiwan have this kind of potential
damage. Therefore it is necessary to develop a structural health monitoring system for
bridge to monitor bridge safety and offer warning message to avoid loss of life.

The objective of this study is to develop a reliable structural health monitoring
system for bridge based on its vibration measurements under operation conditions.
Through the output-only measurements, on-line system identification algorithm and
damage detection methodologies are developed to monitor bridge safety. Verification
of these methodologies through the large-scale lab test of bridge scouring and
long-term field test of Nu-Do Bridge at Yilan is conducted. Based on the data
collected from the experimental scouring test of bridge structure, the features of
bridge vibration for damage early warning are investigated.

2. EXPERIMENTAL SETUP OF BRIDGE SCOURING TEST

A four span bridge model with simply supported girder on each pier was
constructed to across a flume of width 4.0 meter in the hydraulic lab. The span length
is about 1.0 m. The sketch and the dimension of this bridge are shown in Figure 1.
The bridge piers are embedded in sand with depth of 30 cm. 12 velocity sensors are
deployed along the bridge deck to collect the vibration signal of the bridge during
scouring process in transverse direction (along stream line). Photos of the bridge
during and after test are shown in Figure 2. Velocity response data of the bridge
during scouring process are collected. The VSE-15D sensor is used and it is a servo
velocity meter produced by Tokyo Sokushin Co., Ltd. This sensor is very sensitive to
detect the low level vibration motion and the linear range (0.2Hz~70Hz) is suite for
SHM applications. Data acquisition system collected the velocity response of the
bridge from all twelve sensors with sampling rate of 200 Hz. Camera was also
installed in each bridge pier to observe the scouring phenomenon. Figure 3 shows data
from sensor node #2 and node #9, and the scouring depth from the observation. The
total run time on this bridge scouring test is 200 min (12,000 sec). All the test setup
will be good for on-line monitoring of the bridge structure.

3. ON-LINE SYSTEM IDENTIFICATION METHODOLOGY

The recursive stochastic subspace identification (RSSI) algorithm is used for
conducting operational model analysis through output-only measurements. A new
RSSI algorithm has been proposed to avoid the use of singular value decomposition
[1]. This algorithm consist of two steps: (1) update the LQ decomposition; (2) update
the column space of extended observability matrix. The first step implies that the LQ
decomposition needs to be updated as long as there is a new set of data provided. The
second step on updating algorithm was proposed how to update the LQ decomposition
when appending only one column to block Hankel matrix. To speed up the
computation for on-line and almost real time computation, an advanced algorithm to
update the LQ decomposition when appending more than one column to block Hankel
matrix is proposed. Through this process there is no need to conduct the LQ



decomposition on the new Hankel matrix for each recursive procedure which can
reduce the computation time to extract the system dynamic characteristics. Detail
about it can be found in reference [2].

It is important to note that to extract the system dynamic characteristics from the
observation matrix, distinguish the true modes from the noise modes becomes a very
critical issue. The system order n based on the singular value decomposition (SVD)
of observation matrix o, was first determined. Through the use of singular value

decomposition (SVD) the system order n can be determined from the singular value
greater than the assign value. Then output modal accuracy correlation (OMAC) and
weighted phase error (WPE) procedures can sequentially be used, and the true modes
can be distinguished from the noise modes [3]. Figure 4 shows the identified
time-varying system natural frequencies of the bridge structure by considering all the
measurements from the deck to form the data Hankel matrix for RSSI. It is observed
that the change of system dominant frequencies in relating to the scouring depth and
the pier settlements is closely related. It is important to point out that prior to the
t=7800 sec (significant settlement at pier No.3) the change of system dominant
frequencies can be observed.

4. DAMAGE DETECTION AND LOCALIZATION

Different from the detection of time-varying system natural frequencies, more
significant features which can not only identify the damage but also detect the damage
locations need to be explored. Through vibration-based monitoring data the on-line
damage location was investigated.

4.1 Application of Cross-correlation Function Amplitude Vector

To avoid the limitation of the model-based damage detection techniques and
considering the need of on-line damage detection, the concept of cross correlation
analysis can be used. One simple approach is to test the cross-correlation from two
measurements at the same time. Consider two random signals the correlation,
X, (t) and x, (t), the correlation coefficient between these two signals is defined as:
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where “T” is the time window selected for estimating the correlation coefficient. It is
believed that for an intact structural system the correlation coefficient p,; between

two measurement nodes, k and j, should be higher than the damage structure. Suppose
more than two measurements are taken, the concept of cross correlation function
amplitude vector (CorV) of the responses of a structure can be used [4]. It is defined
the CorV as:
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where r, is the maximum value of the cross correlation function between
X () and x,(t) (1=123,...,n):
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Since that the CorV is a vector, so it can be normalized as follows:
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It is believed that the correlation coefficient between the measurement locations
X, (t) and x (t)in a structure should be close to one if the structure is not damage.

Otherwise, the correlation coefficient will be low if damage occurred in the structure.
In order to identify and quantify such a damage that occurred in the structure the
correlation between two CorV'’s is defined:
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where CorV (j) and CorV*(j) indicate the correlation coefficient of two different
state, one is the reference state and other is the damaged state (or data calculated from
different time period to express the different situation to the reference state). Higher
CVAC value indicates higher correlation between the two states.

From the monitoring data of bridge scouring test, first, using Eq.(1), the
correlation coefficient between two measurement locations is calculated. It is assumed
that data from the sensor location No.1 is considered as the reference measurement.
For a fix time window the correlation coefficient between the monitoring data from
the reference location and the other measurement location can be generated.
Correlation coefficient with moving time window of 20.0 sec, is generated and shown
in Figure 5. It is observed that a significant drop of correlation coefficient with respect
to the reference measurement location (sensor No.1) was observed at time t=7800 sec.
which is in consistent with the results from time-frequency analysis. the abnormal of
correlation coefficient was also observed between t=6000 sec and t=7800 sec. Based
on Eq.(5) CVAC was also calculated with respect to different reference data
(measurement location). Figure 6 shows the calculated CVAC as a function of time by
considering two different sensing nodes as references. A moving time window with
time window of 20 sec was used. The first time window set of the data will be used as
the undamaged set of data (or reference). From CVAC value one can detect the
abnormal change of CVAC starting at t=6000 sec, which was identified as the prior
information (or early warning message) to the significant change of CVAC which
occurred at t=7500 sec. No matter which location was selected as the reference sensor
node the CVAC value can still detect the damage. It is important to note that the
CVAC can provide an early warning message before the significant change of the
system dynamic characteristics (such as the dramatic drop of system dominant natural
frequency).

CorV(i) =

(4)

4.2 Application of Proper Orthogonal Decomposition (POD)

Proper orthogonal decomposition is a procedure for extracting a basis for a
modal decomposition from an ensemble of signals. If the response signal g, (t) of a

discrete dynamic system with m degree of freedom (d.o.f.) are sampled n times and if
the matrix Q is defined as

ql(tl) ql(tn)

Q=| : (6)
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Then the proper orthogonal modes are the eigenvector of G = (%)QQT, and the



corresponding eigenvalues are the proper orthogonal values. It had been proved that
POMs are related to the vibration eigenmodes in some cases. Therefore, the POD
should be an alternative way of modal analysis for extracting the mode shapes of a
dynamic system. The POD was applied to the dynamic response data collected from
the measurements of the bridge scouring test. Figure 7 shows the calculated
time-varying first and second eigenmode. To evaluate the change of eigenmode along
the time sequence, the initial calculated eigenmode was selected as the reference one;
and then the root-mean-square error of the difference between the reference
eigenmode and the eigenmode calculated from different time window is generated, as
shown in Figure 8. It is observed that the abrupt change of time can be identified.

4.3 Damage Detection from Novelty Analysis

Different from the CVAC analysis, to conduct the structural damage diagnosis,
based on the undamaged data the structural system matrix was estimated as a
reference state. First, the reference data set was collected and the SSI algorithm was
applied to estimate the undamaged state of the structural system. Based on the
reference data set (the 1% initial data set is assumed as the reference data), the SSI
method is applied to identify the undamaged system transition matrices ®,,,,, which

can be computed by exploiting the shift structure of the extended observability matrix.

The novelty analysis on system’s dynamic responses is used to determine the
bias of the predict responses if the system significantly deviates from initial baseline
condition. The idea is to examine if the Kalman prediction model identified from the
reference state data can be applied to newly measured data. Residual error can be
estimated by comparing the predicted responses with the measured ones. The k-step
state vector and the corresponding prediction error are calculated as:

e, =Y, -Y =Y, -MX, (7

From the prediction error vectors e, at any k-th sampling point, the Novelty index
(NI) is defined as either Euclidean Norm or Mahalanobis Norm [5]:

Euclidean Norm: NI " =||e, | (8a)

Mahalanobis Norm:  NI," =./el ¥ e, with X=yy' /N (8b)

The prediction procedure is performed using the data from the reference and actual

states of the structure respectively. In the absence of damage, the level of prediction

errors should remain unchanged. Otherwise, the Novelty index will change

significantly for the damage case. Besides, the outlier statistical analysis, such as

mean and standard deviation of NI, can also give a quantitative assessment of
damage.

In Novelty analysis the identified system transition matrix needs to be estimated

in advance, and the ordinary Kalman filter can be used to predict the state. The

Kalman filter, in estimating the state consists of two estimates of the state X, ,: (1) a

predicted estimate kak of the state X,,, based on information up to the time
t =k At (consisting of observations Y,,---,Y, ); and (2) an update estimate

A

X,.1/k.aWhich is obtained at time t=(k +1)At when a new measurement Y, , is
observed. For damage estimation the difference between the predicted estimate of
state vector, XM =(Dk+1,k5(k and the measurements is calculated. Recursive
processing of the measurement data is applied through compute the predicted state



and predict the observation Y,,, and compute the update state. For damage

assessment only the predicted measurements are used, the computed update state is
only for the estimation of Kalman gain and the prediction error covariance.

To perform the Novelty analysis using the response measurement of bridge
during scouring process, signals collected from all sensors (12 sensing nodes) are
collected to form the Hankel matrix with dimension of [1200x 7900]. The time

window is set to 40 sec. and with moving window of 40 sec. the first time segment
will be used as the undamaged case. Figures 9 show the plot of the mean value of
Euclidean Norm from each window was calculated from sensor node No.2 and No.9
respectively. It is observed that the mean value of Norm for each time window
increase significantly at t=6000 sec. (particularly for data from sensor No0.9 node)
which was identified before the significant change of system dominant frequency.
Comparison among the results from RSSI, Novelty analysis and the vertical
deformation measurement at Pier N0.3, one can detect the abnormal features from the
vibration measurement before the significant settlement of bridge pier occurred. This
Novelty analysis can also be used for early warning index.

4.4 Singular Spectrum Analysis for damage detection and early warning

The use of singular spectrum analysis is discussed as an alternative to traditional
digital filtering method. Its usefulness has been proven in the analysis of climate and
geophysical time series. SSA procedure consists of four steps: (1) embedding, (2)
singular value decomposition (SVD), (3) grouping, and (4) reconstruction. The detail
description of each step is shown in formal terms [6]:

With the concept of moving window (window length=40 sec) the data Hankel
matrix was formed. This analysis can be done either for each sensing node or from all
recorded sensing nodes. Through SVD the on the data Hankel matrix and eigenvalues
were calculated. Figure 10(a) and 10(b) shows the difference between the first two
largest eigenvalues from Node 2 and Node 9 measurement. This figure shows that
prior to the significant settlement of the bridge pier No.3 at 7=7800 sec, the distinct
feature of the difference between two largest eigenvalues can be identified (at about
t=6000 sec). This feature can be served as an index for early warning. This difference
on the first two largest eigenvalues can also be calculate from all set of measurements
instead of using data from a single sensing node, as shown in Figure 10(c) (plot in log
scale). Through the reconstruction process of signal in SSA by using only the first two
largest eigenvalues, comparison between the original signal and the reconstructed
signal was made. The reconstruction is using the moving window technique by
selecting the time window of 40 sec and with moving window of 40 sec. The size of
the Hankel matrix is set to 600x7951. The root-mean-square (RMS) error between the
reconstructed and recorded signal is plotted and shown in Figure 11. It is observed
that the RMS error of the sensor signal from node 9 shows a significant change
(around t=5800 sec) before the large settlement occurred. This indication can also
provide an early warning index.

S. FIELD EXPERIMENTS

Long-term ambient vibration data of Nu-Do Bridge at Yilan is collected in order
to validate the proposed methodologies. Wireless communication system for data
transmission is used in this experiment, as shown in Figure 12. On Sept. 19, 2010,
Fanapi typhoon invading Yilan area and significant rainfall was observed in the
northern part of Taiwan. Figure 13 shows the photo of the bridge in normal weather
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condition and in Fanapi typhoon period. The vibration response of the Nu-Do Bridge
is also collected during the Fanapi typhoon strike. Application of RSSI to the
measurements is conducted before, during and after the flood period by using sensor
node D5H and D14H. Time-varying system natural frequencies were observed from
the data at sensor node D14H which was close to the main river course, as shown in
Figure 14. Figures 15 show the damage detection analysis by using Novelty Index and
SSA. It is clearly observed that all these indices can detect the change of abnormal
condition from the measurements.

6. CONCLUSIONS

Development of structural diagnostic approaches, in-service monitoring of
structures with sensor networks may serve an important tool to identify the system
modal parameters automatically and evaluate operational health of structures during
normal operation condition. Damage detection algorithms depend on the accuracy of
the modal parameters estimates and the success of on-line structural health monitoring
and damage detection on feature extraction from response data. The main objective of
this study on structural health monitoring (SHM) for bridge structure during scouring
process is to identify the features from the in-situ operational condition and to detect
the changes when damage occurred. Recursive Stochastic Subspace Identification can
be applied for the identification of time-varying system frequencies. With suitable
selection of model parameters one can conduct these analysis in almost real time
analysis.

As for damage detection and early warning, distinct feature will be extracted
from measurements before the severe damage occurred. Four methods are proposed in
this study. Through the experimental study on bridge damage caused by scouring in
the laboratory, the time-varying dynamic characteristics and the damage features of
the bridge can be identified. It is possible to detect the abnormal situation (or features)
from the response measurements before the significant damage occurred.
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Fig. 2: Photos of the bridge test specimen
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