坡地土砂災害觀測資訊進階加值分析與應用

Added-value analysis and application of monitoring data on slopeland disaster

主 管 單 位:行政院農業委員會水土保持局

計 畫 編 號: SWCB-109-277

合 作 單 位:國立臺灣大學水工試驗所

計畫主持人:劉格非教授

計畫參與人:魏士超、Sudhan Regmi、郭亭妤、張智涵、許文達

緣起與目的

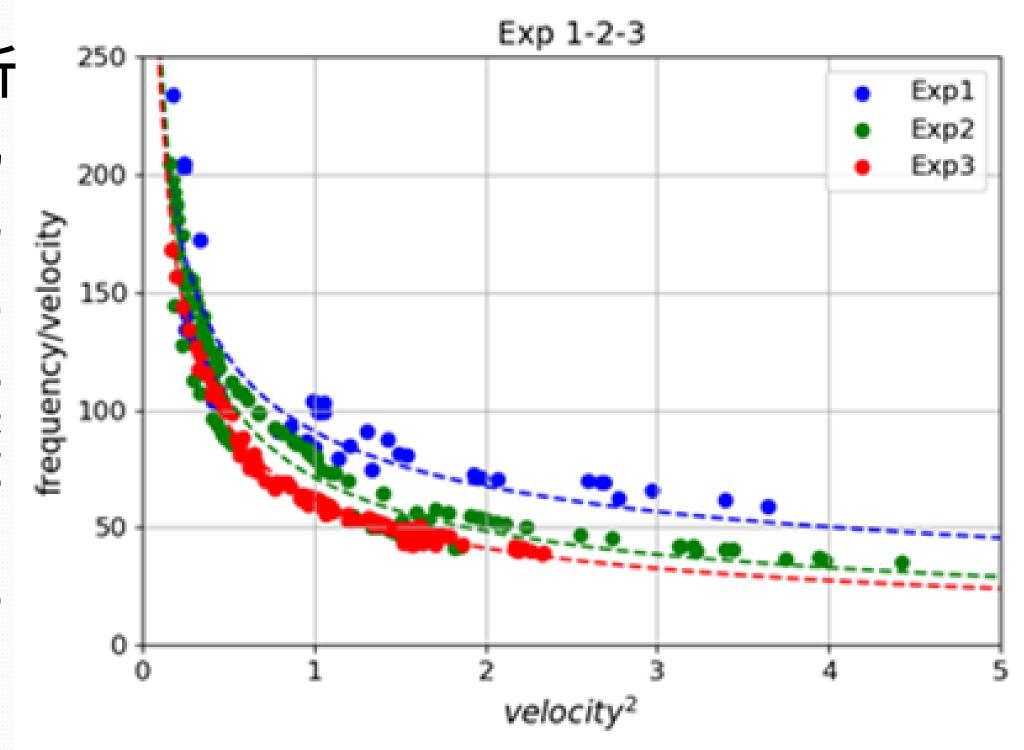
水保局自民國91年開始,陸續發展土石流防災觀測科技,期能更加精進坡地土砂災害之觀測科技研究及發展,為了將觀測資料有效轉化為災害應變的資訊,本計畫擬透過觀測站最常使用的兩種觀測資料:影像與地聲,發展可用於預警的加值運算,並以整合式互動網站呈現最後應用方式。

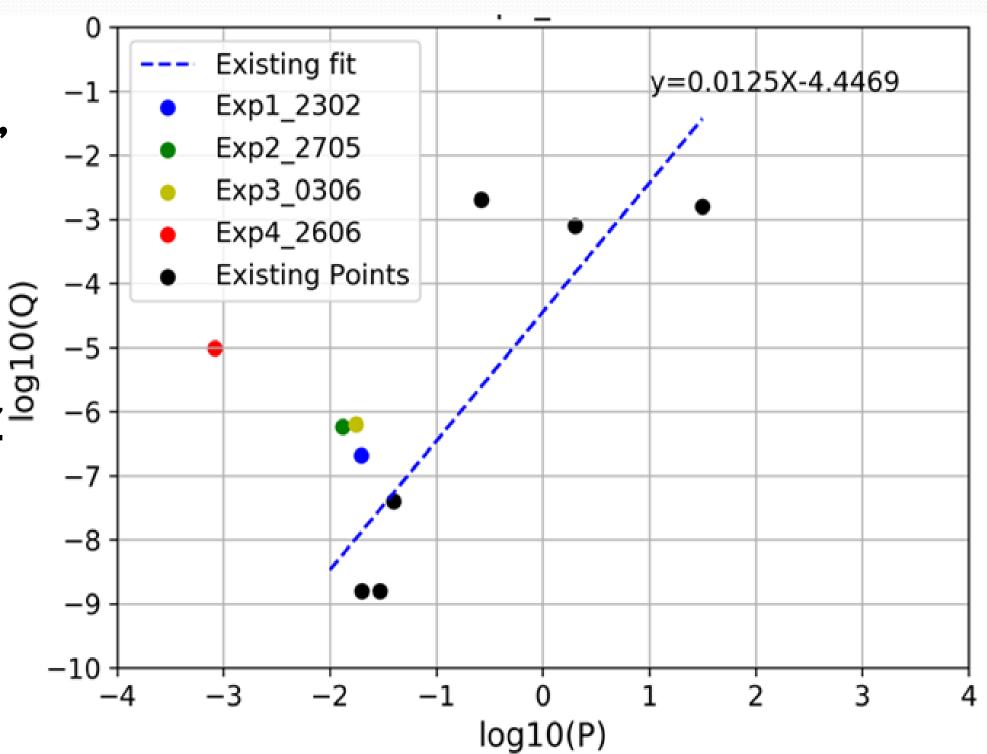
系統展示平台

本研究計畫也已經建立了即時監測預警的網頁,網頁中包含目前所有監測站中監測儀器的訊號,攝影機與地聲探測器的訊號直接顯示在該設備所在溪流(如右上圖),同時攝影機以灰階值法計算的結果就顯示於攝影機下方,地聲檢知器的訊號與FFT分析預警曲線也顯示在一起,網頁右下方更增加了集水區的雨量分布曲線(目前每次暴雨計算完就更新)。

此外,網頁左上方選項中則額外提供:歷史資料(可供下載)、事件查詢、360度現場照片、衛星照片、GIS與航照圖對比等功能。若選擇過去事件,使用者可以把過去事件資料下載,資料切成一分鐘一筆,方便下載。 此網站將會逐年更新水保局相關計畫於神木村的研究成果,並公開提供使用者使用。

影像偵測與波速估算


攝影畫面以創新的總灰階值變化率的搭配自動檢定之門檻值,可以準確偵測土石流前鋒的抵達時間。此外,在河道中流向方向定義兩個矩形的ROI,利用兩個ROI偵測到之土石離前鋒抵達時間,本方法則可以快速計算出土石流前鋒的波速



幀率 (FPS)	ROI 1 偵測時間 (秒)	ROI 2 偵測時間 (秒)	前鋒抵達 之時間差	前鋒波速 (畫素/秒)
5	31.4 (晚9.2秒)	35 (晚9.133)	3.6	43.98
2	32 (晚9.8秒)	33 (晚7.133)	1	153.8
人眼判釋 參考時間 (秒)	22.2	25.867	3.667	43.16

地聲偵測與流量估算

本研究透過地聲探測器的資料以短時間傅立葉分析後,將主頻率(10-40Hz)總能量當作指標,先以能量時間變率與能量時間斜率變化兩者突然改變為依據,已可成功偵測土石流抵達時間。

