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1. Introduction

It is not beyond the realm of possibility that a mega-earthguake occurs in the Manila subduction zone, triggerng widespread
tsunamis across the South China Sea (5C5). Historical tsunami hazards on southwest coasts of Taiwan (Fig. 1) may also be caused

by such SCS tsunamis, amplified by shoaling of continental shelf when approaching Taiwan, In this study, we propose to build a

warning systerm in Taiwan for SCS tsunamis, through a comhbination of Wphase inversion and unit tsunami methods.
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3. Results

W e judge the qualities of solutions based on the discrepancies between those of W phase inversion and those of GCMT solutions of the same event, interms of both
moment magnitudes (M ] and facal mechanisms. The comparsons of M far six scenarios are presented in Fig, 6 with group | (£ component anly ] in the first column
and group Il (ZME components) in the second column, The numbers in each box (scenario) indicate the absolute means of magnitude differences and corresponding
standard deviations, The absolute means of all six scenarios are less than 0.1 unit, validating the application of Wphase inversion using data of regional network to
determine source parameters of SC5 earthquakes greater than M, 5.9, Amongthe three tried scenarios (gCMT location, t, location, and [t +xy] location), only the last
two are practicakle inreal-time W phase inversion, amang which the group Il t, location is the best scenario (least discrepancies). The Kagan rotation angle refers to
the solid angle rotating from one double couple to another [B] and thus is a measurement of focal mechanism discrepancies. We present the Kagan anges - relative
to the GCMT solutions of the same events - of the six scenarios in Figure 7 ith mean and standard deviation indicated, using the same fashion as Figure & Again, the

group Il t, location is the ane with the minimum mean amang all real time practicable scenarios.
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. 'I! Characteristics of tsunami wave propagation in 5C5 and around Taiwan depend on bathymetric features and can be learned from simulated propagation of unit
- : — 1 csources, Fig, 8 shows the propagation waves at different time frames of an exemplary unit source. Fig. 9a shows the resulting 32 unit tsunamis of the exemplary unit
i source, which demonstrate that stations 14 to 26 are the most affected ones with southern tip of Taiwan (stations 20, 21, and 23) being the most vulnerakle (Fig. ).
. The STASATA scheme waorks well in determining the arrival times of unit tsunamis (Fig. 9b) and we compile the data to produce one arrival-time map for each unit
Fig. 3. Observed (hlack) and synthetic (red) W phase for the first shock of . 0 (Fig. 10], which will also he stored in database and are readily for prompt ardval-time predictions,
the M 7.0 Dec. 26, 2006, Pingtung earthquake. The Wphase time window
L e 10 126 of each station is trimmed and concatenated for inversion. Labels are i &
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m ";r i o ()
Fig. 2. Distribution of SC5 earthguakes occurring from lanuary 2000 o x D000 - . F‘F T e 1o [ g [ 02 o[ ea[ ®
to July 2009 (circles) with color-keyved epicentral distances relative | _..-”'ﬁ o s | F,,nﬁ F oo g n - o '“,:‘T - T S
to central Taiwan (hlue for near group and green for far group). B e - < o T S T N YR R
Triangles represent distribution of virtual network with non-BATS ; . 4 e 0a[ 0% 109 negf T 09|
e B - o [ =i | 108 | R =100 |
stations higger symbol and labeled. - I,ﬁ_ . e e l e e R ——
& I J : 'I .;I "o -T‘:l:l ., 100 =00 ::{ll: = Ll =100 I:-I:E' 120 1 | :lzﬂ oy T 200
B T.ﬂ, . 2 | ] ol 1od o3 sl
" "\"h"‘""‘-\.\_":\-‘“- & - ?-ﬂ':-‘i; i _-.E:-l 0o 200 % 30 e l-I:'-:- Iq.-:-l 200 u:.rl'“ 00 200
- v e PR ; PRV W - - 158 | " -108 oL sk 108 |
- e A 5 a 10 1B 18 1 1z EF | T ] P L] S o TH 05 i sl |:- Y L=4] =y O r :;:n,’! g
=] |5‘E T 1013 '!ﬁ:l. 1
-'-:\-l-?' i 1o 'EE. . ':'E:
. . ! ._]I .m':l : 1104 it I:u"" Fa B4 faral :I:-:- : ) i ] I:I:I:.:I = il 204G
2.2. Unit Tsunami Methods e : o o8 | 18 ]
g 2 .I.{'l i ] 204 i} Ll i =] =] =05] v i} 164 Eir s
_ ) ) ) ) ) _ ) _ ) _ g‘)ﬂ 02:00:00 = 03:00:00 am i)
The unit tsunami methods pre-calculate propagation of unit sources with the resulting unit tsunamis stored in database for synthetics of real tsunami . g 5 - y
waves, The principle of unit tsunami methods is conceptually analogous to Green’s function in Seismology and only works in linear systems, As i o i = _.-f" il a3 o ol ol b | eig ey o |
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(b) After 48 min, note that the wave has reached Hualien on east Taiwan

coast, but only Kaohsiung on that of western Taiwan due to significantly

hathymetric differences. (c) At 2 hours, the tsunami wave along sastern Fig. 9. {a) Unit tsunamis of the 32 virtual stations for the unit source in Fig,
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Taiwan has reached the majority of north Taiwan and note that northwest 3. Fed numbers indicate stations following Fig. 5. Unit is minute for x-axis
Taiwan coasts have the most warning time. (d) After three hours, almost all and cm for y-axis. (k) Results of STA/LTA scheme applying on the unit
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Fig. 5. Locations .':'f 32 CWE‘ tidal statlur'!s to build a tsunami warning systerm in Taiwan for earthguakes in the SC5 region. The
(b) where @E set up virtual Stat":'_r'S to record unit W phase inversion allows us to rapidly determine moment tensors of large
tsunamis of the 14x10 unit sources. The earthguakes for the calculations of vertical seafloor displacements. The applicahility
stations are numhbered from north to south in of W phase inversion for 5C5 earthguakes using BATS stations and its extension has
a counterclockwise sense surrounding Talwan., been attested and expected to be improved, pending future completion of extended
BATS., We have huilt a database of unit tsunamis for the source region of the Manila
subduction zone and the prediction of ardval times is readily available once the
1 epicenter of tsunamigenic earthgquake is known,
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Fig. 10. The arrival time maps for different unit sources in minutes, See Figure 4
for nomenclature of unit source. (a) For the 08 06 unit source. (h) For the
14 10 unit source (the top right corner). (c) For the 01 01 unit source (the
hottom left corner). (d) For the 14 01 unit source (the top left corner).
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Fig. 4. (a) Division of the source region of the Manila subduction zone into 14
(latitudinal) times 10 (longitudinal) subregions of sguares, The red pixel is the
ninth from hottom and the sixth from left, indicated with 09_06. (b] The vertical

displacement assigned to the pixel as unit source.



