108-017-7B08

MOTC-IOT-107-H3DB001d

臺東海岸公路溢淹及沿岸地形

變遷特性研究

交通部運輸研究所

中華民國 108 年 2 月

108-017-7B08

MOTC-IOT-107-H3DB001d

臺東海岸公路溢淹及沿岸地形

變遷特性研究

著 者:蕭士俊、蘇青和、李俊穎、陳鈞彦

交通部運輸研究所

中華民國 108年2月

國家圖書館出版品預行編目(CIP)資料

in the second se	 臺東海岸公路溢淹及沿岸地形變遷特性和 蕭士俊等著 初版 臺北市:交通 所,民 108.02 面; 公分 ISBN 978-986-05-8556-8(平裝) 1.公路管理 2.防災工程 	研究 / 郛運研
557	103	8000971

臺東海岸公路溢淹及沿岸地形變遷特性研究
著 者:蕭士俊、蘇青和、李俊穎、陳鈞彥
出版機關:交通部運輸研究所
地 址:10548 臺北市敦化北路 240 號
網 址:www.ihmt.gov.tw (中文版>中心出版品)
電 話:(04)26587132
出版年月:中華民國 108 年 2 月
印刷者:
版(刷)次冊數:初版一刷 70 冊
本書同時登載於交通部運輸研究所港灣技術研究中心網站
定 價:250 元
展售處:
交通部運輸研究所運輸資訊組•電話:(02)23496880
國家書店松江門市: 10485 臺北市中山區松江路 209 號 F1•電話: (02)25180207
五南文化廣場:40042臺中市中山路6號•電話(04)22260330

 GPN:1010800148
 ISBN:978-986-05-8556-8 (平裝)

 著作財產權人:中華民國(代表機關:交通部運輸研究所)

 本著作保留所有權利,欲利用本著作全部或部份內容者,須徵求交通部運輸研究所書面授權

107 臺東海岸公路溢淹及沿岸地形變遷特性研究

	交
	通
	部
	運
	輸
	研
GPN: 1010800148	究
定價:250 元	所

交通部運輸研究所合作研究計畫出版品摘要表

出版品名稱:臺東海岸公	路溢淹及沿岸地形变送	墨特性研究	
國際標準書號	政府出版品統一編號	運輸研究所出版品	計畫編號
978-986-05-8556-8	1010800148	編號	MOTC-IOT-107-
		108-017-7B08	H3DB001d
本所主辦單位:港研中心	合作研究單位:財團	去人成大研究發展基	研究期間
主管:朱金元	金會		
計畫主持人:蘇青和	計畫主持人:蕭士俊		自 107 年 02 月
研究人員:陳鈞彦	研究人員:吳漢倫、『	東彦龍、林鼎傑、蕭	至107年12月
聯絡電話:04-26587120	郁		
傳真號碼:04-26571329	地址:701 台南市東區	益大學路1號	
	聯絡電話:06-275757	5#50970	
關鍵詞:台9線、公路溢	淹、地形變遷、侵蝕夠	災害、淤積災害	

摘要:

本計畫主要為針對「台9線」海岸公路溢淹及沿岸地形變遷特性進行研究,除針 對該區域相關背景資料蒐集外,亦須建置適合模擬台東海岸水動力與地形變遷之數值 模式,並進行台九線公路溢淹和沿岸中長期地形變遷特性探討,以瞭解拓寬之公路(如 台9線)可能造成災害影響。依據相關背景資料蒐集,已分析台九線往昔易致災路段, 並透過現場勘查作業,瞭解目前台九線公路現況及後續災害分析之重要區域。透過衛 星影像蒐集及分析,研析台九線海岸長期變化情況及受海岸結構物設置後灘線變化情 形,另以影像分析方式評析海岸漂沙季節性變化行為。

本計畫主要以「數值模擬」與「特性災害分析」方式探討台九線災害特性,因此 數值模式方面,已完成遠域、中域及近域數值模式建置,並與觀測資料進行波浪、潮 位及流速等相關驗證,證明目前數值模式模擬計算之可靠性,地形變遷模式則透過與 觀測資料進行比對,調校相關參數使其模擬地形變遷趨勢較具合理性;另災害特性分 析方面,則透過遠域數值模式計算結果與長期觀測資料結果進行分析,估算波浪設計 條件與代表性波浪條件,以分別做為公路溢淹與地形變遷評估模擬之邊界條件。最後, 依據數值模擬成果分析台九線海岸公路致災潛勢區域,並標示「公路溢淹」、「侵蝕 災害」及「淤積災害」三種災害類型潛勢區域,俾利未來施工或防災作業之參酌。

出版日期	頁數	定價		本	出	版	品	取	得	方	式	
108年2月	236	250	凡屬機密性出版 公益機關團體及 營機關團體可按	品學定	均不	對外 函價 購。	公開 洽本	。普 5.所9	·通性 免費!	上出 別 贈 閲	反品, ;私	公誉、 人及私

機密等級:

□密□機密 □極機密 □絕對機密

(解密條件:□ 年 月 日解密,□公布後解密,□附件抽存後解密,

|□工作完成或會議終了時解密,□另行檢討後辦理解密)

∎普通

備註:本研究之結論與建議不代表交通部之意見。

PUBLICATION ABSTRACTS OF RESEARCH PROJECTS INSTITUTE OF TRANSPORTATION MINISTRY OF TRANSPORTATION AND COMMUNICATIONS

TITLE: The study on the o	characteristics of the coastal hi	ghway floodi	ng and the nearshore mor	phology			
ISBN (OR ISSN)	GOVERNMENT PUBLICA	TIONS	IOT SERIAL NUMBER	PROJECT NUMBER			
978-986-05-8556-8	NIMBER		101 SERIAE ROMBER 108-017-7808	MOTC-IOT-107-			
778-988-05-8558-8	1010800148		100-017-7000	3DB001d			
DIVISION: Harbor & Ma	rine Technology Center			PROJECT PERIOD			
DIVISION DIRECTOR:	The Teenhology Center			I KOJECI I EKIOD			
PRINCIPAL INVESTIGA	TOR: Su Ching-Ho			FROM February 2018			
PROJECT STAFF: Su Ch	TO December 2018						
PHONE: (04) 26587132							
FAX: (04) 26564415							
RESEARCH AGENCY: N	NCKU RESEARCH AND DE	VEI OPMEN	ΤΕΟΙΙΝΠΑΤΙΟΝ				
PRINCIPAL INVESTIGA	TOR: Hsiao Shih-Chun	V LEOI MEI	III I OUNDATION				
PROJECT STAFF W11 H	L Chen YL Lin TC Hsia	οY					
ADDRESS: University Ro	ad Tainan Eastern District O	ne.					
PHONE: (06) 2757575 ex	t 50970	iie					
KEY WORDS:							
Provincial Highway No. 9	, Highway flooding, Morpholo	ogical change	, Erosion disaster, Depo	osit disaster			
ABSTRACT:							
This study is to analyze	e the characteristics of the coa	astal highway	flooding and the nearsh	ore morphology of the			
Provincial Highway No.	9. To understand the effect	due to road	d widening (e.g., Provin	cial Highway No. 9),			
environmental data collect	tion, the establishment of the w	vave-coupled	hydrodynamic model and	I the sediment transport			
model for Taitung, and th	e analysis of the highway floo	oding and nea	arshore morphology are p	performed. The regions			
which have a higher risk	on the Provincial Highway N	o. 9 is figure	d out by the collected his	story data and the field			
survey. The long-term vari	iation of the nearshore morpho	logy because	of the coastal structures a	re investigated through			
the satellite images. Bes	ides, the seasonal sediment	transports ar	re analyzed. The well-v	alidated wave-coupled			
hydrodynamic model and	the sediment transport model	by comparing	g with the measured data	were constructed. The			
design and representative	wave conditions for analysis of	the highway	flooding and nearshore m	orphology are obtained			
by the numerical simulati	on and the long-term field ob	servation. Fi	nally, three types of disa	ster including highway			
flooding, erosion disaster,	and deposit disaster are analyz	ed for the reg	ions which have a higher	risk. The achievements			
in this study will be helpfu	al for construction and disaster	prevention.					
			CLASSIFICAT	ION			
				CONFIDENTIAL			
DATE OF PUBLICATION NUMBER OF PAGES PRICE SECRET D'OP SECRET							
February 2019 236 250 ■UNCLASSIFIED							
The views expressed in this	publication are not necessarily	those of the M	linistry of Transportation a	nd Communications.			

目錄

中文摘要I
英文摘要II
目錄III
圖目錄VI
表目錄XI
第一章 緒論1-1
1.1 計畫緣起1-1
1.2 研究範圍與對象1-1
1.3 研究內容與工作項目1-3
1.3.1 研究內容1-3
1.3.2 工作項目1-5
1.4 工作流程與架構1-5
1.5 預定進度表1-6
第二章 資料蒐集分析 2-1
2.1 潮位資料蒐集分析2-1
2.2 海象資料蒐集分析2-3
2.2.1 波浪資料蒐集分析2-3
2.2.2 海流資料蒐集分析2-5
2.3 海岸漂沙資料蒐集分析2-6
2.4 河川水文資料2-7
2.4.1 流量2-8
2.4.2 河川輸砂2-9

2.4.3	颱風2-	-12
2.5 台九	_線易致災區分析2-	-13
2.6 衛星	星影像蒐集及分析 2-	-23
2.6.1	衛星影像資料蒐集 2-	-23
2.6.2	近岸結構物對海岸影響之探討 2-	-24
2.6.3	季節性漂沙變化分析探討2-	-29
第三章 數	在評估	3-1
3.1 數值	直模式建置	3-1
3.1.1	遠域波流模式	3-1
3.1.2	波流與地形變遷模式	3-4
3.2 模式	代設置3.	-22
3.2.1	遠域模式設置	-22
3.2.2	中域模式設置3-	-24
3.2.3	近域模式設置3-	-27
3.3 水重	为力模式驗證及地形變遷模式調校	-30
3.3.1	水動力模式驗證3-	-31
3.3.2	地形變遷模式調校 3-	-39
3.4 數值	直模式評估	-43
3.4.1	數值模式評估架構 3-	-43
3.4.2	遠域模式 - 設計條件評估	-45
3.4.3	中域模式 - 致災區範圍劃定 3-	-52
3.4.4	近域模式 - 災害特性分析方法建立	-59
第四章 公	路溢淹致災區段特性分析	4-1
4.1 海岸	現況波浪數值模擬分析	4-1

4.2 公路安全性檢討4-	16
4.2.1 公路溢淹水理特性分析 4-	16
4.2.2 海岸結構物安定性分析 4-2	23
4.2.3 地質特性分析	27
4.2.4 海岸公路穩定性整體研析 4-2	28
4.3 公路溢淹災害特性分析評估 4-2	28
第五章 沿岸流與沿岸中長期地形變遷特性分析 5	5-1
5.1 夏、冬季及全年度代表性波浪條件及輸砂條件5	5-1
5.2 地形變遷趨勢模擬結果5	5-3
5.3 海岸侵淤災害分析5-2	22
5.4 海岸侵淤特性分析評估5-2	26
第六章 結論與建議6	5-1
6.1 結論6	5-1
6.2 建議6	5-2
參考文獻參	1
附錄一 期中審查意見回覆表 附 1	-1
附錄二 期末審查意見回覆表 附 2	2-1
附錄三 PTM 模式理論 附 3	3-1
1、歐拉輸砂計算附3	3-1
2、粒子傳輸輸砂計算附3	3-8
附錄四 極端事件災害特性分析 附 4	-1
附錄五 期末簡報 附 5	5-1

圖目錄

E	圖 1.1	計畫研究範圍圖(台9線拓寬工程靠海路段)1-3
E	圖 1.2	計畫工作流程與執行架構1-6
E	圖 2.1	大武溪姑崙(2)測站月流量平均值及月流量最大值分析圖.2-9
E	圖 2.2	大武溪姑崙(2)測站月最大輸砂量平均及月最大輸砂量分析圖
	•••••	
E	圖 2.3	2011年測太麻里溪流量及總輸砂量關係 2-11
E	圖 2.4	歷年各場颱風侵襲路徑圖(資料來源:中央氣象局) 2-12
E	圖 2.5	現勘區域示意圖 2-18
E	圖 2.6	南興路段與大武漁港現勘成果圖(民國 107 年 4 月) 2-19
E	圖 2.6 (約	續) 南興路段現勘成果圖(民國 107 年 6 月) 2-20
E	圖 2.7	多良路段與金崙大橋現勘成果圖(民國 107 年 4 月) 2-21
E	圖 2.8	香蘭段及美和、三和海岸現勘成果圖(民國 107 年 4 月). 2-22
E	圖 2.9	大武漁港周圍海域長期地形變遷情況 2-27
E	圖 2.9(約	賣1) 大武漁港周圍海域長期地形變遷情況2-28
E	圖 2.10	漂沙範圍分析流程2-29
E	圖 2.11	南興至大武段漂沙範圍分析結果 (5月)2-31
E	圖 2.11(續) 南興至大武段漂沙範圍分析結果 (12月)2-32
E	圖 2.12	加津林至多良段漂沙範圍分析結果 (5月)2-33
E	圖 2.12(續) 加津林至多良段漂沙範圍分析結果 (12月)2-34
E	圖 2.13	香蘭至三和段漂沙範圍分析結果 (5月)2-35
E	圖 2.13(續) 香蘭至三和段漂沙範圍分析結果 (12月)2-36
E	圖 2.14	台九線海岸漂沙變化分布圖2-37

圖 3	.1	平行計算時各核心資料傳遞示意圖	-4
圖 3	.2	輸砂連續性定義(體積守恆)3-	12
圖 3	.3	流和波造成的混和係數垂直分布3-	17
圖 3	.4	二維水動力與地形變化數值模式架構圖	22
圖 3	.5	大域計算網格示意圖3-	24
圖 3	.6	中尺度模擬網格範圍以及配置情形	26
圖 3	.7	南興至大武路段模擬網格範圍以及水深地形	28
圖 3	.8	加津林至多良路段模擬網格範圍以及水深地形3-	29
圖 3	.9	香蘭至三和路段模擬網格範圍以及水深地形3-	30
圖 3	.10) 2015 莫蘭蒂(Meranti)颱風路徑圖3-	32
圖 3	.11	1 2017 尼莎(Nesat)颱風路徑圖3-	32
圖 3	.12	2 觀測站位置示意圖3-	33
圖 3	.13	3 2016 莫蘭蒂颱風期間水位數值與觀測值驗證 3-	34
圖 3	.14	4 2016 莫蘭蒂颱風期間暴潮偏差數值與觀測值驗證3-	34
圖 3	.15	5 2016 莫蘭蒂颱風期間波高數值與觀測值驗證3-	35
圖 3	.16	5 2017 尼莎颱風期間水位數值與觀測值驗證	35
圖 3	.17	7 2017 尼莎颱風期間暴潮偏差數值與觀測值驗證3-	36
圖 3	.18	3 2017 尼莎颱風期間波高數值與觀測值驗證	36
圖 3	.19	9 TMW1 海流站觀測位置圖3-	38
圖 3	.20) TMW1 海流站監測結果玫瑰圖3-	38
圖 3	.21	L TMW1 實測值與模式計算之海流流速結果驗證比較 3-	39
圖 3	.22	2 太麻里地區海岸底質中值粒徑(D ₅₀)分布圖	41
圖 3	.23	3 太麻里地區海岸地形變遷分布圖 3-	42
圖 3	.24	4 太麻里地區海岸地形變遷結果與實測資料比對3-	43

圖	3.25	數值	i評估流程圖	3-44
圖	3.26 結果.	多良	村外海水深約 1038 m 處暴潮偏差以 Weibull	分布套配 3-50
圖	3.27 結果.	多良	村外海水深約 1038 m 處颱風波高以 Weibull	分布套配 3-51
圖	3.28	台九	。線海岸公路樁點高程分布圖	3-55
圖	3.29	中尺	度範圍 50 年設計條件波場計算結果	3-56
圖	3.30	公路	岸前波高計算結果	3-57
圖	3.31	計畫	區河川輸砂計算結果	3-58
圖	3.32	本計	-畫災害分類、定義與分析內容	3-60
圖	4.1	南興.	至大武段設計條件波場分布圖	4-4
圖	4.2	南興	至大武段設計條件平均水位分布圖	4-5
圖	4.3	南興.	至大武段設計條件波浪引致流場變化分布圖	4-6
圖	4.4	南興.	至大武段設計條件剖面圖	4-7
圖	4.4(約	賣 1)	南興至大武段設計條件剖面圖	4-7
圖	4.4(約	賣 2)	南興至大武段設計條件剖面圖	4-7
圖	4.5	加津	林至多良段設計條件波場分布圖	4-8
圖	4.6	加津	林至多良段設計條件平均水位分布圖	4-9
圖	4.7	加津	林至多良段設計條件波浪引致流場變化分布圖	4-10
圖	4.8	加津	林至多良段設計條件剖面圖	4-11
圖	4.8(約	賣 1)	加津林至多良段設計條件剖面圖	4-11
圖	4.8(約	賣 2)	加津林至多良段設計條件剖面圖	4-11
圖	4.9	香蘭.	至三和設計條件波場分布圖	4-12
圖	4.10	香蘼	至三和設計條件平均水位分布圖	4-13

圖	4.11	香蘭至三和段設計條件波浪引致流場變化分布圖 4-1	4
圖	4.12	香蘭至三和段設計條件剖面圖4-1	5
圖	4.12(續 1) 香蘭至三和段設計條件剖面圖4-1	5
圖	4.12(續 2) 香蘭至三和段設計條件剖面圖4-1	5
圖	4.13	溯升及越波示意圖 4-1	7
圖	4.14	容許越波量界定範圍圖(資料來源:CEM, 2005)4-1	8
圖	4.15	南興至大武路段「公路溢淹」災害潛勢分布圖 4-2	1
圖	4.16	加津林至多良路段「公路溢淹」災害潛勢分布圖 4-2	2
圖	4.17	香蘭至三和路段「公路溢淹」災害潛勢分布圖 4-2	3
圖	4.18 布圖.	南興至大武段塊石最小重量及堤趾基礎保護工最小粒徑分	5
圖	4.19	加津林至多良段塊石最小重量及堤趾基礎保護工最小粒徑	
	分布圖	圖	6
圖	4.20 布圖.	香蘭至三和段塊石最小重量及堤趾基礎保護工最小粒徑分	.7
圖	5.1	臺東浮漂波浪資料時序列 5-	2
圖	5.2	臺東浮漂夏、冬季波浪資料統計結果5-	2
圖	5.3	夏季期間平均流場(南興至大武段)5-	5
圖	5.4	冬季期間平均流場(南興至大武段)5-	6
圖	5.5	全年度平均流場(南興至大武段) 5-	7
圖	5.6	夏季地形變化結果(南興至大武段)5-	8
圖	5.7	冬季地形變化結果(南興至大武段)5-	9
圖	5.8	全年度地形變化結果(南興至大武段)5-1	0
圖	5.9	夏季期間平均流場(加津林至多良段)	1
圖	5.10	冬季期間平均流場(加津林至多良段)	2

圖 5.11	全年度平均流場(加津林至多良段)5-13
圖 5.12	夏季地形變化結果(加津林至多良段)5-14
圖 5.13	冬季地形變化結果(加津林至多良段)5-15
圖 5.14	全年度地形變化結果(加津林至多良段)5-16
圖 5.15	夏季期間平均流場(香蘭至三和段)
圖 5.16	冬季期間平均流場(香蘭至三和段)5-18
圖 5.17	全年度平均流場(香蘭至三和段)5-19
圖 5.18	夏季地形變化結果(香蘭至三和段)
圖 5.19	冬季地形變化結果(香蘭至三和段)
圖 5.20	全年度地形變化結果(香蘭至三和段)
圖 5.21	南興至大武段段海岸線侵淤趨勢變化成果 5-24
圖 5.22	加津林至多良段侵淤趨勢變化成果5-25
圖 5.23	香蘭至三和段侵淤趨勢變化成果5-26

表目錄

	預定進度甘梯圖1-7
表 2-1	歷年潮位研究蒐集資訊表 2-2
表 2-2	潮位站天文潮位歷年相關研究資料比較表 2-3
表 2-3	中央氣象局潮位資料2-3
表 2-4	波浪研究蒐集資訊表 2-4
表 2-5	中央氣象局波浪最大示性波高統計資料表(台東外洋浮標)2-5
表 2-6	中央氣象局波浪最大示性波高統計資料表(台東浮標) 2-5
表 2-7	歷年海流研究蒐集資訊表 2-6
表 2-8	歷年漂沙研究蒐集資訊表 2-7
表 2-9	歷年河川研究蒐集資訊表 2-8
表 2-10	2002~2008 年姑崙(2)測站歷年月平均流量與月最大流量表
•••••	
表 2-11	2003、2005 年姑崙(2)測站輸砂量及對應之流量表 2-10
表 2-11 表 2-12	2003、2005年姑崙(2)測站輸砂量及對應之流量表2-10 台九線公路易致災路段相關資料分析2-15
表 2-11 表 2-12 表 2-13	 2003、2005年姑崙(2)測站輸砂量及對應之流量表2-10 台九線公路易致災路段相關資料分析2-15 衛星影像圖資蒐集彙整表
表 2-11 表 2-12 表 2-13 表 2-14	2003、2005年姑崙(2)測站輸砂量及對應之流量表2-10 台九線公路易致災路段相關資料分析2-15 衛星影像圖資蒐集彙整表2-23 Google Earth 及 SPOT 無償下載衛星影像資料彙整表2-26
表 2-11 表 2-12 表 2-13 表 2-14 表 3-1	2003、2005年姑崙(2)測站輸砂量及對應之流量表2-10 台九線公路易致災路段相關資料分析2-15 衛星影像圖資蒐集彙整表2-23 Google Earth 及 SPOT 無償下載衛星影像資料彙整表2-26 再懸浮及沉積率的計算特性3-15
表 2-11 表 2-12 表 2-13 表 2-14 表 3-1 表 3-2	2003、2005年姑崙(2)測站輸砂量及對應之流量表2-10 台九線公路易致災路段相關資料分析2-15 衛星影像圖資蒐集彙整表2-23 Google Earth 及 SPOT 無償下載衛星影像資料彙整表2-26 再懸浮及沉積率的計算特性3-15 遠域模式網格配置表
表 2-11 表 2-12 表 2-13 表 2-14 表 3-1 表 3-2 表 3-3	2003、2005年姑崙(2)測站輸砂量及對應之流量表2-10 台九線公路易致災路段相關資料分析2-15 衛星影像圖資蒐集彙整表2-23 Google Earth 及 SPOT 無償下載衛星影像資料彙整表2-26 再懸浮及沉積率的計算特性3-15 遠域模式網格配置表3-24 中域模式網格配置表3-25
表 2-11 表 2-12 表 2-13 表 2-14 表 3-1 表 3-2 表 3-3 表 3-3 表 3-4	2003、2005年姑崙(2)測站輸砂量及對應之流量表
表 2-11 表 2-12 表 2-13 表 2-14 表 3-1 表 3-2 表 3-3 表 3-4 表 3-5	2003、2005年姑崙(2)測站輸砂量及對應之流量表2-10 台九線公路易致災路段相關資料分析2-15 衛星影像圖資蒐集彙整表2-23 Google Earth 及 SPOT 無償下載衛星影像資料彙整表2-26 再懸浮及沉積率的計算特性

表	3-7	太麻里 TMW1 海流測站實測值與模擬值量化比對結果3-	-39
表	3-8	影響計畫區歷次颱風代表性設計波高與暴潮偏差計算成果	:表
	• • • • • • • • • • •		-45
表	3-9	分布函數相關統計量3	-49
表	3-10	計算樣本順位機率之 $_{\alpha}$ 及 $_{\beta}$ 值3	-50
表	3-11	不同重現期下多良村外海水深約 1038 m 處之暴潮偏差與	}波
	高推算	算值3.	-52
表	3-12	致災區範圍(近域模擬區塊)劃定原因	-54
表	4-1	公路溢淹災害特性分析比對與驗證4	-29
表	5-1	太麻里溪河口底質粒徑大小組成成分表	5-3
表	5-2	海岸侵淤特性分析比對與驗證5	-28
表	5-3	衛星影像灘線分析比對5	-30

第一章 緒論

1.1 計畫緣起

臺東海岸的沿岸漂沙問題存在已久,所造成的海岸地形變遷問題 在歷年累積下,已對沿海公共工程(包括公路地基維護及海岸養灘工 程)或漁業經濟層面(如大武漁港航道長期淤塞問題)造成不可忽視之 影響。

台9線公路目前的道路拓寬工程,如香蘭至大鳥路段辦理公路車 道拓寬,因颱風及強風季節大浪襲擊,產生沙灘流失及海岸線不斷地 往內陸退縮。颱風季節時,近岸大浪直接襲擊公路溢淹的可能性大增, 碎波波浪更可能直接淘刷臺9公路之底部基座。整體而言,在大武漁 港現存狀況下,瞭解臺東海岸沿岸流變化及其可能產生之中長期地形 變遷特性,對於未來可能影響公路拓寬後之區域,是刻不容緩的議題。

基於上述,有必要針對台9線公路沿岸海岸環境進行近岸水動力 分析與海域輸砂特性分析,以有效掌握整體台9線公路沿岸海岸環境 變動情形供後續參考。

為研究此議題, 需建立適合臺東海岸公路之海岸區域之波流耦合 水動力與地形變遷模式, 並搭配附近海域各項監測資料, 以驗證模式 之正確性。由模擬成果定性瞭解現有海岸公路溢淹及沿岸地形變遷特 性, 包括大武漁港等臺東海岸沿岸流及中長期地形變遷特性, 以及近 岸區域未來因公路拓寬後(如台9線)之可能影響。

1.2 研究範圍與對象

本研究藉由蒐集往昔實測相關資料(衛星或測量資料)分析,以發 掘台9線公路易致災之區段資訊,並配合數值模擬研析海岸地形變遷 之影響及機制,分析可能產生之中長期地形變遷特性,對於未來可能 對公路拓寬後之區域造成影響。

圖 1.1 為計畫範圍示意圖,本工作資料分析及數值模擬沿台九線 拓寬路段進行分析,本路段為「香蘭-大鳥」路段,拓寬工程大致沿既 有省道拓寬,道路側與海岸相鄰,故陸側基座將直接受海浪衝擊。研 究初步利用現場調查資料,以及歷年海岸變遷資訊,分析研判歷年較 易致災地點。再依據較新的地形資料,建立數值地形格網,並利用全 球潮位模式資料,作為模式之水位邊界條件。

圖 1.1 計畫研究範圍圖(台9線拓寬工程靠海路段)

1.3 研究內容與工作項目

1.3.1 研究內容

依本計畫專業服務投標須知內容,本計畫工作內容說明如下: 1.目的 本研究目的係建立適合臺東海岸公路之海岸區域之波流耦合 水動力與地形變遷模式,並搭配附近海域各項監測資料,以驗證模 式之正確性。模式可作為瞭解現有海岸公路溢淹及沿岸地形變遷 特性,包括大武漁港等臺東海岸沿岸流及中長期地形變遷特性,以 及近岸區域未來因拓寬後公路(如台9線)之可能影響。

2.緣起

臺東海岸的沿岸漂沙問題存在已久,所造成的海岸地形變遷 問題在歷年累積下,已對沿海公共工程(包括公路地基維護及海岸 養灘工程)或漁業經濟層面(如大武漁港航道長期淤塞問題)造成不 可忽視之影響。

3.重要性

台 9 線公路目前的道路拓寬工程,如香蘭至大鳥路段辦理公 路車道拓寬,因颱風及強風季節大浪襲擊,產生砂灘流失及海岸線 不斷地往內陸退縮。颱風季節時,近岸大浪直接襲擊公路溢淹的機 會大增,碎波波浪更可能直接淘刷臺 9 公路之底部基座。整體而 言,在大武漁港現存狀況下,瞭解臺東海岸沿岸流變化及其可能產 生之中長期地形變遷特性,對於未來可能影響拓寬後公路之區域, 是刻不容緩的議題。

4.施政關聯性

本研究配合屬本所年科技綱要計畫「海洋及交通運輸防災技 術研究」之細部計畫「港灣環境資訊整合及防災應用研究」執行。 5.施政配合性

本計畫研究成果可提供交通部、公路總局、水利署及第八河川 局等相關單位作為未來施政與後續計畫作為參考,俾利擬定相關 防治對策。

6.前後連貫的整體性

本計畫目的為先行建立可自行維護及精進適合臺東海岸公路 沿岸區域的水動力及地形變遷模式,並搭配短期監測驗證模式之 合理性與擬定未來改進方針。發展後的水動力及地形變遷數值模 式可用於瞭解目前近岸區域的波浪、潮汐、海流及地形變遷特性, 也藉此評估台9線道路拓寬後,在海岸地形變遷的潛勢下,可能受 到之隱憂及威脅,並提供相關資訊給相關公路單位作為施政參考。

1.3.2 工作項目

- 蒐集往昔相關海氣象資料並分析強烈季風及颱風期間臺東外海 風力、波浪、潮汐及海流特性。
- 2. 蒐集往昔相關地形資料(衛星或測量資料),並分析臺東海岸公路 溢淹及沿岸地形變遷之特性,以發掘台9線公路易致災之區段資 訊。
- 建立臺東海岸區域的波流耦合水動力及漂沙地形變遷模式,並利 用本所港研中心或其他單位鄰近觀測資料,以校驗水動力模式相 關參數及模擬結果,並說明地形變遷模擬之合理性。
- 分析臺東海岸公路容易致災區段之海水溯上與溢淹特性。
- 5. 探討臺東沿岸區域的沿岸流與中長期地形變遷特性。
- 6. 每年度需參考科技部「科技計畫績效管考平臺 (http://stprogram.stpi.narl.org.tw)」之「績效指標(實際成果)資料格式(word檔案)」及「佐證資料格式(word檔案)」,就本計畫成果 之特性,選填合適績效指標項目,並以量化或質化方式,說明本 計畫主要研究成果及重大突破。

1.4 工作流程與架構

本計畫委辦工作項目主要分為三部分,第一部分為資料蒐集與特 性分析作業階段,第二部分為模式建立與檢定驗證作業階段,第三部 分為特性分析作業階段。各項工作項目擬進行之工作流程與工作執行 架構如圖 1.2,工作內容與流程說明如下:

圖 1.2 計畫工作流程與執行架構

1.5 預定進度表

本計畫預定進度說明如表 1-1。

表 1-1 預定進度甘梯圖

	月次	2	-	1	2	3	4	5	6	7	8	9	10	11	供
工作項目	年別	1						10	07)m 計
	月份	آ	1	2	3	4	5	6	7	8	9	10	11	12	8-1-
(一)資料蒐集	 分析		[[[[[
(二)數值評估															
1.水動力數	值模式建	き置						[
2.檢定驗證															
3.地形變遷	模式建置	<u>د</u>													
(三)公路易到 分析	(災區段	特性													
(四)沿岸流與地形變遷	4 沿岸中 4 4 4 4 4 4 4 4 4 4 4 4 4	長期 fr													
(五)報告撰寫															
查核點				*				*				*	*		
工作進度估計	百分比		_	10	15	25	35	45	55	65	75	85	90	100	
(累積數)															
		第1	季: i	政府音	邹門石	开究言	十畫	長本貧	資料表	、登翁					
西宁本村	テ 町 ト	第2	季: ;	期中幸	服告衫	刃稿									
顶化 亘 73	久赤山	第3	季: ;	期末载	服告衫	刃稿									
		第4	季:)	成果幸	服告修	多正历	廴 經費	費支出	出報告	志					
說明:		<u> </u>													
(1)工作項目訪	青視計畫 ,	性質	及需	要或住	衣研究	究計畫	畫綱季	更說明	月訂定	こ。預	頁定進	き度い	、粗線	表示	其起
訖日期。															
(2)「工作進度	百分比	」欄係	、為配	合管	考作	業所	需,	累積百	百分日	と請え	見工亻	乍性貿	貢就以	、下因	素擇
一估計訂定:①)工作天禁	數②終	至費之	二 分酢	23 I	.作量	之比	重④	擬達	成目	標之。	具體藝	数字。	D	
(3)每季之「預	夏定查核	點」,	請在	條形	圖上	標明	※號	,並行	在「予	頁定了	查核黑	出」根	日具體	建註明	關鍵
性工作要項。															
						1		<u> </u>							

	備註:	為已完成之工作進度		為未完成之工作進度	
--	-----	-----------	--	-----------	--

第二章 資料蒐集分析

2.1 潮位資料蒐集分析

依據「臺東海岸(尚武段)監測調查計畫(2/2)」報告中所蒐集臺東 (尚武段)附近海岸潮汐觀測資料,有「1987年臺灣漁業技術顧問社設 置之伽藍潮位站觀測資料」,「1975~1999年、2000~2002年以及 2002 ~2008年經濟部水利署設置之富岡潮位站」、「2004~2008年大武潮 位站」及「2000~2008年中央氣象局設置之成功潮位站觀測資料」。 本計畫依據該報告蒐集相關資料彙整於表 2-1。此外,亦有依據表 2-1 陳列過往報告所蒐集之各站天文潮位資料,將其最高潮位(HHW)、 大潮平均高潮位(HWOST)、平均高潮位(MHW)、平均潮位(MWL)、 平均低潮位(MLW)、大潮平均低潮位(LWOST)及最低潮位(LLW)資料 加以彙整,並依天文潮位資料計算潮差,列於表 2-2中。

由表 2-2 顯示,大武潮位站歷年各項天文潮位之統計值中,最高 潮位為 153.7 cm、平均高潮位為 63.1 cm、平均潮位為 18.6 cm、平均 低潮位為-25.6 cm、最低潮位為-93.2 cm、平均潮差為 88.7 cm、大潮 差為 146.9 cm。富岡潮位站平均高潮位為 53.0~62.8 cm、平均潮位為 6.0~14.3 cm、平均低潮位為-39.0~-33.8 cm、最低潮位為-121.0~-100.8 cm; 伽藍潮位站屬一年短期資料,其平均高潮位為 54.8 cm、平均潮 位為 12.9 cm、平均低潮位為-39.0 cm。成功潮位站平均高潮位為 52.6 cm、平均潮位為-1.0 cm、平均低潮位為-53.8 cm,其中大武潮位站之 最高潮位、平均潮差、大潮差均大於富岡、伽藍及成功潮位站。

表 2-3 為中央氣象局統計潮位資料,其顯示蘭嶼潮位站歷年 (1992~2017年)暴潮位為 0.87 m;台東潮位站歷年(1976~2017年)暴潮 位為 1.525 m;大武潮位站歷年(2003~2017年)暴潮位為 1.655 m;綠 島潮位站歷年(2001~2017年)暴潮位為 1.434 m。

表 2-1 歷年潮位研究蒐集資訊表

研究單位	分析期間 (年)	測站	參考文獻
臺灣漁業 技術顧問社	1987	伽藍	「大武漁港地形觀測檢討報告」
中央氣象局	2000~2008	成功	「2000年中央氣象局潮汐資料觀測年報」 「2001年中央氣象局潮汐資料觀測年報」 「2002年中央氣象局潮汐資料觀測年報」 「2003年中央氣象局潮汐資料觀測年報」 「2004年中央氣象局潮汐資料觀測年報」 「2005年中央氣象局潮汐資料觀測年報」 「2006年中央氣象局潮汐資料觀測年報」 「2007年中央氣象局潮汐資料觀測年報」 「2008年中央氣象局潮汐資料觀測年報」
	1975~1999		「臺東海岸觀測調查分析報告(4/4)」
	2000~2002		「2000 年經濟部水利署臺灣水文年報」 「2001 年經濟部水利署臺灣水文年報」 「2002 年中央氣象局潮汐資料觀測年報」
水利署	2002~2008	富岡	「2002 年經濟部水利署臺灣水文年報」 「2003 年經濟部水利署臺灣水文年報」 「2004 年經濟部水利署臺灣水文年報」 「2005 年經濟部水利署臺灣水文年報」 「2006 年經濟部水利署臺灣水文年報」 「2007 年經濟部水利署臺灣水文年報」 「2008 年經濟部水利署臺灣水文年報」
	2004~2008	大武	「2004 年經濟部水利署臺灣水文年報」 「2005 年經濟部水利署臺灣水文年報」 「2006 年經濟部水利署臺灣水文年報」 「2007 年經濟部水利署臺灣水文年報」 「2008 年經濟部水利署臺灣水文年報」

※資料來源:臺東海岸(尚武段)監測調查計畫(2/2),本計畫重新繪製

潮位站 分析	成功	伽藍		富岡		大武
期間(年) 潮位別	2000 ~2008	1987	1975 ~1999	2000 ~2002	2002 ~2008	2004 ~2008
最高潮位(HHW)	156.0	120.7	130.0	131.8	151.8	153.7
大潮平均高潮位 (HWOST)	77.6	82.5	89.0	95.2	87.3	94.6
平均高潮位(MHW)	52.6	54.8	53.0	62.8	58.1	63.1
平均潮位(MWL)	-1.0	12.9	6.0	14.3	9.9	18.6
平均低潮位(MLW)	-53.8	-39.0	-39.0	-33.8	-37.9	-25.6
大潮平均低潮位(LWOST)	-84.2	-64.4	-82.0	-68.3	-68.3	-52.0
最低潮位(LLW)	-139.0	-111.3	-121.0	-100.8	-115.1	-93.2
平均潮差(mean range)	106.4	93.8	92.0	96.6	96.1	88.7
大潮差(spring range)	161.8	146.9	171.0	163.5	145.6	146.9

表 2-2 潮位站天文潮位歷年相關研究資料比較表

註:1.單位:cm。

2.潮位標高採用正高系統,其水準零點為基隆平均海水面。
 ※資料來源:臺東海岸(尚武段)監測調查計畫(2/2),本計畫重新繪製

测站	最高高潮位 暴潮位(m)	最高天文潮 (m)	平均高潮位 (m)	平均潮位 (m)	平均低潮位 (m)	最低天文潮 (m)	最低低潮位 (m)
蘭嶼	0.87	0.204	0.12	-0.543	-1.102	-1.272	-1.924
台東	1.525	0.929	0.725	0.085	-0.489	-0.833	-1.087
大武	1.655	0.977	0.727	0.391	-0.35	-0.612	-0.934
綠島	1.434	0.895	0.625	0.049	-0.539	-0.845	-1.291

表 2-3 中央氣象局潮位資料

2.2 海象資料蒐集分析

2.2.1 波浪資料蒐集分析

臺東海岸過往現場波浪觀測資料相當少,依據「臺東海岸(尚武段) 監測調查計畫(2/2)」報告中提及,尚武段海岸僅臺東縣政府委託成功 大學水利系於 1991 年 5 月 6~8 日期間,在大武漁港北北東方向、約 8 m 水深處之短期波浪觀測資料,以及該計畫於漂沙調查期間之短期 波浪觀測資料(2008 年 8 與 11 月)。另該計畫亦有蒐集中央氣象局於 鄰近之成功漁港東南方外海約4公里處(36m水深)之波浪資料。本計 畫重新整理該波浪調查觀測資訊與參考資料(參見表 2-4)。另由這些 資料指出,成功大學水利系於1991年5月6~8日期間,在大武漁港 北北東方向、約8m水深處之波浪示性波高範圍約分布在0.60~1.16 m、示性週期範圍約分布在7.2~9.2 sec,中央氣象局於成功漁港東南 方水深約36m之外海,其示性波高範圍約分布在0.50~1.50m、示性 週期範圍約分布在6.5~8.5 sec。另「臺東海岸(尚武段)監測調查計畫 (2/2)」之2008年8、11月短期資料顯示,波浪示性波高範圍約分布 在0.16~0.62m、示性週期範圍約分布在3.6~7.0 sec。

研究單位	期間(年/月)	位置	水深 (m)	波高範圍(m)	週期範圍 (sec)	參考文獻
中央氣象 局	1980/06 ~1982/08	成功漁港	36.0	0.50 ~ 1.50	6.5 ~ 8.5	「大武漁港現 場調查暨水工 模型試驗研究 報告」
成功大學 水利系	1991/05	大武漁港	8.0	0.60 ~ 1.16	7.2 ~ 9.2	「大武漁港現 場調查暨水工 模型試驗研究 報告(II)」
	2008/8/31 ~2008/9/02	大武溪至 朝庸溪	5.3	0.16 ~ 0.22	3.6 ~ 6.4	「臺東海岸 (尚武段)監測
		朝庸溪口	5.8	0.18 ~ 0.25	3.9 ~ 5.2	調查計畫
財團法人 成大水利 海洋研究		大武漁港 南側	5.3	0.18 ~ 0.26	4.1 ~ 4.8	(1/2)」 「臺東海岸
海牛研究 發展文教 其众命		大武溪至 朝庸溪	5.3	0.39 ~ 0.62	5.8 ~ 7.0	(尚武段)監測 調 查 計 畫
坐並胃	2008/11/01~03	朝庸溪口	5.8	$0.37 \sim 0.60$	5.0 ~ 6.9	(2/2) _
		大武漁港 南側	5.3	0.51 ~ 0.60	6.1 ~ 6.7	

表 2-4 波浪研究蒐集資訊表

※資料來源:臺東海岸(尚武段)監測調查計畫(2/2),本計畫重新繪製

表 2-5 和表 2-6 為本計畫整理中央氣象局波浪最大示性波高統計 資料,台東外洋浮標測站於 2012/9/28 觀測到最大波高 18.88 m,發生 於強颱杰拉華期間;台東浮標觀測最大波高為 15.87 m,發生於 2016/9/14 莫蘭蒂颱風事件期間。

月份	觀測次數	波高	尖峰週期	波向	發生時間	備註
		(公尺)	(秒)	(度)	(年月日)	(颱風)
1	2850	7.66	10.2	0	20160124	
2	2711	5.38	-	45	20160229	
3	2187	5.72	8.9	0	20120324	
4	3329	5.32	14.2	0	20150403	
5	4431	5.21	9.3	191	20150511	紅霞
6	4746	6.48	11.6	202	20110625	米雷
7	5121	14.25	11.1	157	20160707	尼伯特
8	5754	12.16	11.9	202	20150823	天鵝
9	5231	18.88	11.6	101	20120928	杰拉華
10	5082	11.23	14.6	0	20141011	
11	3799	7.08	10.4	0	20091102	
12	3071	6.33	13.1	337	20101216	

表 2-5 中央氣象局波浪最大示性波高統計資料表(台東外洋浮標)

表 2-6 中央氣象局波浪最大示性波高統計資料表(台東浮標)

月份	觀測次數	波高	尖峰週期	波向	發生時間	備註
		(公尺)	(秒)	(度)	(年月日)	(颱風)
1	3801	4.6	11.3	101	20130114	
2	3889	3.21	10.8	67	20130208	
3	4416	3.27	10.4	78	20160310	
4	4771	3.4	12.1	78	20130407	
5	5026	4.1	15.1	123	20110528	桑達
6	4750	3.46	9.4	168	20120620	泰利
7	4788	12.08	11.6	168	20160708	尼伯特
8	5057	9.02	15.5	78	20150807	蘇迪勒
9	4861	15.87	13.1	112	20160914	莫蘭蒂
10	5588	8.47	16	90	20141011	
11	11604	6.08	13.1	56	20071127	米塔
12	11579	5.19	10.8	56	20171217	

2.2.2 海流資料蒐集分析

現場海流觀測資料亦不多,僅臺東縣政府委託成功大學水利系於 1990年11月3~4日與1991年5月6~8日期間,在大武漁港海側, 佈置自記式海流儀進行短期之海流調查作業,以及「臺東海岸(尚武段) 監測調查計畫(2-2)」曾監測短期海流觀測資料(2008年8與11月), 其歷年海流研究蒐集資訊,如表2-7所示。其依海流調查結果彙整資 料顯示,尚武段海域於夏季期間,其海流流速約分布在 1~25 cm/sec 間,於水深6m測站之流向分布主要約在 SSW、SW、NNE及 NE, 而水深8m測站之流向多在 NNE方向。大武溪至大武漁港南側於水 深 5.3~5.8m,除朝庸溪口為 ESE~SSW 外,其餘以 N~NE 居多;冬 季期間之海流流速約分布在 2~33 cm/sec 間,其流向主要分布在 SSW~WSW、SSE~WNW、N~NE 等方向,且由調查資料顯示,此路 段海岸之冬季海流流速略大於夏季者。

研究單 位	期間(年/月)	位置	水深 (m)	流速分布範圍 (cm/sec)	流向分布範圍	參考文獻
	1990/11	大武漁港 海側	4.0	5 ~ 20	SSW~WSW	「大武漁
成功大 學 水利系	1770/11		6.0	5 ~ 25	SSW~WSW	港現場調
	1991/05		6.0	5 ~ 25	SSW、SW、 NNE、NE	查暨水工 模型試驗
			8.0	1 ~ 15	NNE	研究報告 (II)」
財 成利研展基法 水洋發教會	2008/8/31 ~ 2008/9/02	大武溪至 朝庸溪	5.3	2 ~ 23	NNE~N	
		朝庸溪口	5.7	1 ~ 14	ESE~SSW	
		大武漁港 南側	5.3	2 ~ 13	NNE~NE	「臺東海 岸(尚武段)
	2008/11/01~03	大武溪至 朝庸溪	5.3	5 ~ 22	NNE~NE	監測調查 計畫(1/2)」
		朝庸溪口	5.8	2 ~ 28	WNW SSE	
		大武漁港 南側	5.3	4 ~ 33	N~NNE	

表 2-7 歷年海流研究蒐集資訊表

※資料來源:臺東海岸(尚武段)監測調查計畫(2/2),本計畫重新繪製

2.3 海岸漂沙資料蒐集分析

臺南水工所曾進行大武漁港模型試驗及漂沙研究,並於 1968 年 5月至 1969 年 8月期間,至大武與南興海岸間灘地進行採樣作業。 另臺東縣政府亦曾委託成功大學水利系於 1990 年 7月與 1991 年 5月 期間,於大武漁港附近進行海岸漂沙調查。「臺東海岸(尚武段)監測 調查計畫(2/2)」亦於 2008 年 8月 31 日~9月 2日以及 2008 年 11月 1~3 日期間進行大武溪至南興溪間之漂沙調查,相關資料來源彙整於 表 2-8。根據這些資料顯示,於大武溪南側至大武漁港北側區段,高 潮灘線中值粒徑(D₅₀)約為 0.471~61.446 mm,其趨勢大致上呈現由南 往北遞增趨勢;低潮灘線中值粒徑約為 2.995~90.104 mm;大武漁港 南側均為卵石,其高、低灘中值粒徑約為 1.179~74.185 mm。而底床 質之中值粒徑約在 0.168~1.905 mm 之間,中值粒徑有隨水深增加而 遞增之趨勢。另依據成功大學水利系 1990 年 7 月與 1991 年 5 月海岸 漂沙調查與「臺東海岸(尚武段)監測調查計畫(2/2)」調查結果顯示, 尚武段海岸附近沿岸漂沙之優勢方向主要為「由北向南」移動;港口 以南部分(南興路段)因漂沙受防波堤阻擋而成侵蝕現象。

研究單位	期間(年/月)	調查範圍	參考文獻
喜去水工的	1968/05	大武至	「大武漁港模型試驗及漂沙研
室南小工川	~1969/08	南興海岸	究報告」
成功大學	1990/07、	大武溪與安朔	「大武漁港現場調查暨水工模
水利系	1991/05	溪間海岸線	型試驗研究報告(II)」
財團法人	2008/8/31		
成大水利海洋	~2008/9/02	大武溪至	「臺東海岸(尚武段)監測調查計
研究發展文教	2008/11/01	南興溪	畫(1/2)」
基金會	~2008/11/03		

表 2-8 歷年漂沙研究蒐集資訊表

※資料來源:臺東海岸(尚武段)監測調查計畫(2/2),本計畫重新繪製

2.4 河川水文資料

「臺東海岸(尚武段)監測調查計畫(2/2)」曾針對大武溪、朝庸溪、 南興溪與安朔溪進行河川水文調查,惟除臺灣電力公司於大武溪流域 之姑子崙溪設有短期流量與輸砂量測站(站名:姑崙(2))外,其餘地點 均無設置測站進行流量與輸砂量觀測,其蒐集資料列於表 2-9。此外, 亦依據資料彙整成「流量」與「河川輸砂」兩部分進行說明(參見表 2-10、表 2-11、圖 2.1 及圖 2.2),俾利瞭解各河川之流量與輸砂量變化 情形,其分述如下:

研究單 資料期間 觀測位置概述 參考文獻 位 「2002年經濟部水利署臺灣水文年報」 「2003年經濟部水利署臺灣水文年報」 2002~2006 臺灣電 「2004 年經濟部水利署臺灣水文年報」 流量 大武溪 **2008** 「2005年經濟部水利署臺灣水文年報」 力公司 (姑崙 「2006年經濟部水利署臺灣水文年報」 (2))「2008年經濟部水利署臺灣水文年報」 「2003年經濟部水利署臺灣水文年報」 2003/08 、 經濟部 輸砂量 「2005年經濟部水利署臺灣水文年報」 2005/06~09 水利署

表 2-9 歷年河川研究蒐集資訊表

※資料來源:臺東海岸(尚武段)監測調查計畫(2/2),本計畫重新繪製

2.4.1 流量

由表 2-10 及圖 2.1 知,大武溪流域豐水期發生在 6~9 月,其流量 平均約在 10.9~24.4 cms,其中月最大流量以 75.2 cms (2005 年 9 月) 為最大;枯水期間約在 1~5 月及 10~12 月,其歷年月流量平均約在 0.4~6.7 cms,其中月最小流量以 0.1 cms (2003 年 3 月)為最低;整體 而言,姑崙(2)測站歷年月平均流量平均值及月最大流量平均值分別為 6.9 及 15.4 cms。

月年	1	2	3	4	5	6	7	8	9	10	11	12
2002	0.9	0.6	0.5	0.3	1.0	5.7	8.8	24.3	4.8	2.2	1.2	0.8
2003	0.3	0.2	0.1	0.3	0.3	16.6	6.0	16.5	14.5	4.2	2.9	1.8
2004	1.4	0.7	0.4	0.6	2.0	2.9	20.6	7.1	12.0	3.6	2.2	5.9
2005	2.1	1.4	0.7	0.4	1.4	16.8	39.9	14.2	75.2	11.8	3.4	1.0
2006	0.9	0.7	0.6	-	-	-	-	-	-	-	-	-
2008	-	-	-	-	-	12.6	13.1	8.7	15.5	11.6	4.0	2.3
平均	1.1	0.7	0.5	0.4	1.2	10.9	17.7	14.2	24.4	6.7	2.7	2.4
最大	2.1	1.4	0.7	0.6	2.0	16.8	39.9	24.3	75.2	11.8	4.0	5.9

表 2-10 2002~2008 年姑崙(2)測站歷年月平均流量與月最大流量表

(單位: cms)

※資料來源:臺東海岸(尚武段)監測調查計畫(2/2),本計畫重新繪製

圖 2.1 大武溪姑崙(2)測站月流量平均值及月流量最大值分析圖 ※資料來源:臺東海岸(尚武段)監測調查計畫(2/2)

2.4.2 河川輸砂

計畫區河川屬典型台灣幼年期河川特性,河岸多崩壁、河床縱坡 陡峻、河道沖刷與淤積變異量大。河床於匯流口處形成台階地形,流 域地形高度落差大。地形大致自西向東陡降,高差近3,000公尺,為 典型東部河川。大部分流域屬中高海拔山區,平原地區比例較少流域。 河川呈現野溪姿態匯流入海,於平時無雨時期幾無流量。資料較豐者 有大武溪以及太麻里溪,以下就兩河川水文條件分別概述。

1.大武溪

由表 2-11 及圖 2.2 知,大武溪流域歷年月最大輸砂量平均發 生在 6~9 月,其輸砂量平均約在 1,276.3~23,518.3 公頓/日,其中月 最大輸砂量以 47,036.6 公頓/日(7 月)為最大;由表中得知,觀測單 位在枯水期間並無進行量測,故無量測數值;整體而言,姑崙(2)測 站歷年月最大輸砂量平均值平均及月最大輸砂量平均值分別為 2,849.2 及 5,470.6 公噸/日。

日公	月最大輸砂量平均	月最大輸砂量	月最大流量平均	月最大流量
月初	(公噸/日)	(公噸/日)	(cms)	(cms)
1	0.0	0.0	1.2	2.1
2	0.0	0.0	0.7	1.3
3	0.0	0.0	0.5	0.9
4	0.0	0.0	0.2	0.3
5	0.0	0.0	1.0	1.8
6	23518.3	47036.6	71.1	119.8
7	3831.9	7663.8	30.0	55.3
8	5564.5	8393.9	14.5	15.0
9	1276.3	2552.6	22.4	26.0
10	0.0	0.0	14.4	25.2
11	0.0	0.0	3.6	3.9
12	0.0	0.0	1.6	1.8
年平均	2849.2	5470.6	13.4	21.1

表 2-11 2003、2005 年姑崙(2)測站輸砂量及對應之流量表

[※]資料來源:臺東海岸(尚武段)監測調查計畫(2/2),本計畫重新繪製

圖 2.2 大武溪姑崙(2)測站月最大輸砂量平均及月最大輸砂量分析

圖

※資料來源:臺東海岸(尚武段)監測調查計畫(2/2)

2.太麻里溪

依據「易淹水地區水患治理計畫-第一階段實施計畫縣管河川 太麻里溪水系規劃(莫拉克颱風後治理計畫檢討報告)」計畫(2009) 推估,計畫河段於莫拉克颱風後之平均年輸砂量約為 125 萬立方 公尺/年,而莫拉克颱風前之平均年輸砂量約為 153 萬立方公尺/年。 由此顯示,近年來因颱風改變太麻里流域整體地貌及河相後,也影 響太麻里溪之河川輸砂量。

根據「台東海岸(太麻里段)環境營造改善計畫(2/2)」的實地調查結果顯示,太麻里溪河川輸砂量之流量以及輸砂率的關係為 $Q_s = \alpha(Q)^{\beta}$ (2.1)

太麻里溪河川之流量以及輸砂率成果如圖 2.3 其中流量為 Q, 輸砂率為 Q_s , α 與 β , 結果顯示 α =0.001、 β =1.568 及 R^2 =0.995。

圖 2.3 2011 年測太麻里溪流量及總輸砂量關係

※資料來源:東海岸(太麻里段)環境營造改善計畫(2/2)

2.4.3 颱風

臺灣地處歐亞大陸與西太平洋交界區域,且颱風發生機率頻繁。 本計畫臺東市區海岸直接面對西太平洋,故不可輕忽颱風期間惡劣海 氣象對本區的影響。圖 2.4 為歷年各場颱風侵襲路徑彙整(1958 年起 至 2016 年止),中央氣象局曾發佈颱風警報之颱風共 194 場,而颱風 中心行進路徑經過臺東區域 150 km 範圍之颱風共 71 場,因此每 3 場 颱風約有 1 場會對臺東海岸造成影響。以於菲律賓南海海域生成的颱 風為例,颱風氣象極值大都發生在南海,而計畫區位於臺灣東岸,對 於仍位於巴士海峽及南海的颱風,臺東海岸受其影響之程度極為輕微。 另當颱風從臺灣西岸登陸穿越中央山脈達東海岸後,颱風受地形摩擦 效應作用,結構受到破壞,能量已急速削減。由歷年侵襲臺東海岸之 颱風資料中以 1980 年的珀西(Percy)颱風為強度最強的颱風,其接近 臺東區域時之中心氣壓為 920 hPa,颱風 中心平均最大風速為 60 m/sec。。

圖 2.4 歷年各場颱風侵襲路徑圖(資料來源:中央氣象局)
2.5 台九線易致災區分析

本計畫於民國 107 年4 月與6 月時,至台九線公路現地進行勘查 (共 2 次),俾利瞭解台九線公路現況,相關現勘資訊亦可做為後續數 值模擬計算之參考背景資料。彙整過往文獻將台九線公路易致災路段 做初步劃分,以利現勘擇點之參酌,相關彙整分析資料如表 2-12 所 示,大致可將易致災區域劃分為6 個區域,分別為南興路段、大武漁 港、多良路段、香蘭路段、美和海岸、三和海岸及太麻里路段等6 區 域。其中,大武漁港主要受「漂沙淤積」影響,使港口經常性淤積, 導致漁船無法出港作業。而因大武漁港地形上影響,其「突堤效應」 導致位於南方的南興路段海岸有「海岸侵蝕」現象發生,使其岸線逐 漸縮短進而常於颱風事件時發生「波浪侵襲」之現象;多良、大溪、 大竹及加津林路段亦有部分路段因公路鄰近海灘區域,易有「波浪侵 襲」現象發生(黃學美和朱志誠,民國 102 年);香蘭、美和及太麻里 路段過往則均有「海岸侵蝕」之現象發生;本計畫套疊臺東海岸 50 年 重現期暴潮溢淹潛勢,顯示三和海岸為「暴潮溢淹」潛勢區域。

透過上述台九線易致災區域資料分析成果,規劃現勘相關區域, 圖 2.5 為本計畫現勘區域分布圖。現勘區域劃分為 5 個區塊,由南至 北分別為南興路段、大武漁港、多良路段(考量便於停泊車輛)與金崙 大橋、香蘭路段及美和與三和海岸等。圖 2.6~圖 2.8 為現勘相關成 果,各區塊分述如下:

1. 南興路段

南興路段目前正在進行海岸養護工程,透過在海岸布置消波 塊,抵擋波浪能量持續侵襲海岸,並降低波浪侵襲之可能性。107 年4月現勘時,養護工程只進行至南興與大武漁港中間路段;於 107年6月時,南興路段南段已開始動工。而於4月時,既有消波 塊周圍呈現粒徑分布不均現象,概因部分粒石是人為拋放所致。沿 路均有架設警告牌示,提醒此路段有浪濤衝擊之危險,另於路旁亦 有設置觀測站,透過人為方式於颱風期間觀測浪高,並即時回報相 關警訊。

2-13

2.大武漁港

大武漁港目前持續在進行清淤工程,港口仍有漂沙淤積之現 象。於港口北側有一突堤設置,使突堤與港口之間淤積成灘岸,且 其粒徑分布較為均勻。由此可知,大武漁港亦須納為本計畫近域地 形變遷之重要區域,以探討未來中長期地形變遷效應可能致災之 情況。

3.多良路段與金崙大橋

多良路段南側(靠近瀧橋附近)由於灘線較短且公路鄰近海岸, 使其有發生波浪溢淹之可能性。而由現場勘查可發現,靠近公路海 灘上有枯枝與垃圾分布,概因波浪與潮流帶動堆積於此處,可知波 浪確實有侵襲公路之可能性。另金崙大橋為台九線新設之高架路 段工程,由現場勘查可知,橋墩柱周圍粒徑分布呈現不均勻之現象, 且含有相當大之粒徑石塊,此應為河川於豐水期或颱風事件時,上 游帶至下游散佈所致。由於此為新完工之工程,因而橋墩柱周圍並 未發現有明顯淤積或侵蝕現象。為瞭解該區域未來地形變遷之趨 勢(淤積或侵蝕),本計畫透過災害特性分析進行研究。

4.香蘭路段

依據過往研究報告顯示,香蘭路段為海岸侵蝕熱區。目前香蘭 路段鄰近海岸仍有海岸侵蝕現象發生,本計畫擬分析該路段與海 岸之距離,並透過數值模擬瞭解未來海岸侵蝕情況對部分路段造 成邊坡淘刷之可能性。

5.三和與美和海岸

三和海岸與美和海岸分別為暴潮溢淹潛勢區與海岸侵蝕區域。 此兩處於現地勘查時,概可清晰聽到波浪帶動粒石之聲音,且因波 浪衝擊影響使粒石運動之現象較為顯著,可知其波浪營力較大,導 致波浪對灘岸衝擊較明顯。然此兩處公路路段大部分離海岸較遠, 較無波浪侵襲或侵蝕公路邊坡之可能,惟仍有部分路段靠近海岸, 應亦納為本計畫致災評估區域。

2-14

表 2-12 台九線公路易致災路段相關資料分析

地點	災害分類	致災情況	資料來源
大武漁港	漂沙淤積	大武漁港受地形和海流影響,每年 10 月 到隔年3月,經常被海砂堵住港嘴,造成 漁船無法出海。	1.新聞 2.潮流作用下臺灣漁港淤砂研究(2012) 3.臺東海岸(尚武段)監測調查計畫(2/2)
南興路段	海岸侵蝕 波浪侵襲	因極端氣候、人為濫墾等因素,加上大武 漁港「突堤效應」,漁港南端海岸線侵蝕嚴 重。此外,於蘇迪勒颱風期間,有海浪侵 襲現象發生;天兔颱風侵襲臺東時,南興 路段受災嚴重,因離海岸近,有觀察到可 能為被大浪帶到公路上的砂石。	1.新聞 2.應用地理資訊系統建置臺灣主要商港溢淹災害潛勢圖之研 究
多良、大 溪、大竹及 加津林	公路溢淹	強颱(萬宜)外圍環流影響,長浪侵襲路段 造成傷亡。	1.新聞 2.台九線海岸公路防浪保護工程之探討(2013)

美和海岸	海岸侵蝕	長期變化:民國 68 年 10 月至民國 75 年 12 月期間,美和海灘呈現往海側延伸淤 積;於民國 75 年 12 月至民國 88 年 1 月 期間,則全面性地往陸側後退侵蝕。 短期變化:以民國 88 年 1 月~民國 89 年 6 月間之變化進行討論,前灘與後灘地形 變遷部分是大致不變的,然而在灘線附近 則同時出現一些礫石砂堆的堆積發展現 象。	臺東知本海岸與美和海岸變遷之研究
三和海岸	公路溢淹	在 50 年重現期水位下,淹水深度達 1 m 以上區域。 本年度(107 年 9 月)山竹颱風事件,有浪 襲致災情況發生。	1.本計畫圖資套疊 2.新聞
太麻里段 香蘭段	海岸侵蝕	太麻里鄉海岸因直接面臨太平洋深海波 浪衝襲,又海底地形陡峭,當颱風波浪由 外海傳遞至近岸時,因底床摩擦力較小, 波浪能量不易折減。在近岸碎波時,對水 體產生之擾動容易對近岸造成較明顯的 海岸地形變遷,尤以颱風季節最為顯著。	 1.臺東太麻里海洋及河口營力對海岸地形變遷之數值模擬研究(2011) 2.臺東海岸(太麻里段)環境營造改善計畫(2/2) 3.臺東海岸(香蘭段)監測防護計畫(2-2)

香蘭段海岸常年受颱風巨浪侵襲影響,」 致於沿岸防風林崩塌嚴重,尤其波浪溯。 急遽作用常夾帶大量砂石推進至高灘上 其衝擊力常造成沿岸防護設施的破壞。	k
--	-------

圖 2.5 現勘區域示意圖

圖 2.6 南興路段與大武漁港現勘成果圖(民國 107 年 4 月)

圖 2.6 (續) 南興路段現勘成果圖(民國 107 年 6 月)

圖 2.7 多良路段與金崙大橋現勘成果圖(民國 107 年 4 月)

圖 2.8 香蘭段及美和、三和海岸現勘成果圖(民國 107 年 4 月)

2.6 衛星影像蒐集及分析

本章節主要為蒐集過往衛星影像資料,並進行台九線「海岸區域 往昔地形變化分析」與「季節性漂沙變化分析探討」,概分為三節做 說明,分別為衛星影像資料蒐集、往昔地形變化探討及季節性漂沙變 化分析探討,各節內容分述如后:

2.6.1 衛星影像資料蒐集

本計畫主要蒐集的衛星影像圖資概分為三部分,分別為中央大學 太遙中心免費介接圖資、Google Earth 及中央大學太遙中心無償下載 圖資,各衛星影響圖資特點及本計畫運用分析之相關說明如表 2-13 所 示。

項目	特點	運用說明		
太遙中心免費介接圖資	 ✓ SPOT 衛星影像 ✓ 1996 年至 2017 年圖資均有 ✓ 每一年提供一張圖資,但無 法得知圖資確切月份 ✓ 解析度:10 m 	 ✓ 近岸結構物 對海岸之影< 響 		
Google Earth	 ✓ 福衛2號衛星影像 ✓ 2011年至2018年均有圖資 ✓ 每一年提供圖資數量不固定 ✓ 無法得知每張圖資確切時與 分之時間點 ✓ 解析度:5 m 	 ✓ 輔助季節性 漂沙特性説 明 ✓ 輔助岸線量 化評估 		
無償下載圖資	 ✓ SPOT 衛星影像 ✓ 2004/9/1 至今均有圖資 ✓ 每一年提供圖資數量與品質 不穩定 ✓ 得知每張圖資確切時與分之 時間點 ✓ 2015/3 後,圖資較不完整 ✓ 解析度: 10~20 m 	 ✓ 季節性漂沙 特性說明 ✓ 輔助岸線量 化評估 		

表 2-13 衛星影像圖資蒐集彙整表

依據本計畫蒐集圖資之各別特性,其透過相關分析探討「近岸結 構物對海岸之影響」、「季節性漂沙變化」及後續針對本計畫地形變遷 災害因子進行致災潛勢區域岸線量化探討。其中,太遙中心免費介接 圖資來源較為穩定,每年均有一張衛星圖資,因此適合用以分析台九 線海岸區域近岸結構物對海岸之影響,而目前計畫區中以大武漁港周 圍近岸結構物較多,地形變遷現象亦最顯著,因而會以該區域做為探 討對象;季節性漂沙變化則需有較完整的整年 12 個月份的圖資來進 行分析,才能較合理探討一年內漂沙變化行為,此部分則需透過無償 下載的 SPOT 衛星圖資來進行分析探討;岸線量化探討則需解析度較 高之圖資,才能夠量化岸線,進行岸線變化探討,此部分則需透過能 夠得知確切時間的無償下載 SPOT 衛星圖資與 Google Earth 圖資來進 行分析。然由於 SPOT 衛星圖資之解析度品質較不穩定,因此需要先 進行品質篩選後,再進一步運用於岸線量化分析。

表 2-14 為本計畫蒐集 Google Earth 及 SPOT 無償下載衛星影像 資料彙整表,其中 SPOT 衛星影像又有分彩色和黑白兩種不同的影像, 黑白型式的影像解析度 (10 m) 較彩色(20 m) 高,因此用於岸線量化 分析時,均以解析度較高之影像為主,而 Google Earth 為福衛 2 號影 像(5 m),其解析度高於 SPOT 衛星影像(10 m~20 m),表中黃底色塊 之影像即為解析度較高之影像圖資,可供後續岸線量化探討之參考。

2.6.2 近岸結構物對海岸影響之探討

本節透過太遙中心免費介接圖資(每年均有一張衛星圖資),探討 分析台九線海岸區域近岸結構物對海岸影響情況。其中,因大武漁港 周圍長期以來的近岸結構物變化較為頻繁,使海岸變化較為顯著,因 而本章節以大武漁港周圍海域為對象進行海岸長期變化之探討。

由 1999 年至 2017 年太遙中心免費介接圖資中可瞭解,大武段漁 港周圍海岸變化情況(參見圖 2.9)。而大武漁港周圍,因長年來周遭常 有結構物建置,使之地形變動現象較為顯著。相關地形變化概述如下:

- (1) 1999年明顯看出大武漁港港口周圍已有漂沙累積現象產生,而 該處漂沙概多由上游河川輸砂往南部帶動,再因漁港地形影響, 使之易累積漁港口造成漁船通行不便。
- (2) 2000年時,大武漁港北側攔砂堤已建置完成,藉以攔截上游輸砂,降低港口淤積現象發生。
- (3) 2006 年時,大武漁港北側海岸已有顯著堆淤現象產生。
- (4) 2008年時,可看到漁港口內部有淤積現象發生。依據過往文獻 (溫志中等人,2012年)指出6月後因攔砂堤處砂灘淤滿,由北 往南傳送之漂沙越過攔砂堤,傳至漁港南段,導致漁港口淤積。
- (5) 2009 年影像顯示,大武漁港內側有大量漂沙累積於港內,此現 象可能與 2009 年 8 月莫拉克颱風事件有關。依據過往新聞報 導表示,莫拉克颱風時,大武溪出海口淤積極大量砂石漂移造 成大武漁港淤積嚴重,所以港區漁民亦可歸屬莫拉克受災戶。
- (6)於2010年影像中,可看到懸浮載分布情況,由此可看到北側攔砂堤效應對懸浮載運動影響,使之造成北側淤積;南側港口出口處反而較無漂沙補助之情況。
- (7)於2014年影像中可知,為解決南側海岸侵蝕問題,漁港南側興 建突堤與離岸堤進行攔砂。
- (8) 2015 年影像中已可看到攔砂之成效,於漁港南側形成海灣灘岸。
- (9) 2017年時,因將草埔隧道拓寬工程清出的土方用於南側養灘,因此影像中顯示南側海岸砂灘顯著增加,而本團隊於今年度 (民國 107年)於該處現勘時,已無發現離岸堤,應為堆積土砂 掩埋。

年 月	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
1	SP	SP	SP	SP	SP	SP	NA	NA	SP	NA	SP	SP	NA	SP
2	NA	NA	SP	SP	NA	SP	SP	SP	NA	GE	NA	SP	SP	NA
3	SP	NA	NA	SP	SP	NA	SP	NA	NA	SP	GE	NA	NA	NA
4	SP	NA	SP	NA	NA	SP	SP	NA	SP	GE	NA	SP	NA	SP
5	SP	SP	SP	SP	NA	SP	NA	NA	SP	NA	NA	NA	NA	NA
6	SP	SP	NA	NA	SP	SP	NA	SP	NA	SP	SP	NA	NA	SP
7	NA	SP	SP	SP	SP	NA	SP	NA	SP	SP	SP	NA	SP	SP
8	SP	NA	SP	GE	NA	SP	NA							
9	SP	GE	SP	NA	NA	SP								
10	SP	GE	SP	SP	NA	SP	SP							
11	SP	GE	GE	SP	SP	NA	NA	GE						
12	SP	NA	SP	GE	NA	NA	NA	SP						

表 2-14 Google Earth 及 SPOT 無償下載衛星影像資料彙整表

※影像類型說明

1. SP:SPOT 衛星影像

2. GE: Google Earth 衛星影像

3. NA: 無此時間點之衛星影像

4. 黄底:解析度較高之衛星影像

圖 2.9 大武漁港周圍海域長期地形變遷情況

圖 2.9(續 1) 大武漁港周圍海域長期地形變遷情況

2.6.3 季節性漂沙變化分析探討

無償下載的 SPOT 衛星圖資為本計畫衛星蒐集資料中,時間密度 較高且較完整之圖資,因而可運用於分析季節性的漂沙變化。於表 2-14 中可知,2006 年所蒐集的衛星圖資較具一致性,且為較完整。因 此,本章節擇選 2006 年一系列的衛星影像(SPOT 衛星),來進行季 節性漂沙變化探討。其中,以每個月衛星影像中漂沙範圍做為探討對 象,透過影像分析方式,劃設出各月份的漂沙範圍,並計算其面積, 藉以瞭解台九線沿岸漂沙季節變化趨勢。然目前漂沙變化分析僅以 「漂沙範圍」面積為主,而無法分析其範圍內的「漂沙濃度」。除非能 夠獲致品質較佳之衛星影像,再配合現場懸浮值濃度量測,進行影像 調校與率定,才能更為完善定義漂沙整體量值,目前僅簡易的範圍分 析來判斷季節性的漂沙分布情況。

各衛星影像漂沙範圍分析方法流程如圖 2.10 所示,首先調整影 像對比,以利漂沙分布較為顯著;再者,分析各衛星影像之像素等值 分布,可繪出像素等值圖;最後,再篩選各影像之像素門檻值,劃設 門檻值之範圍,即為各影像漂沙範圍分布,配合 ArcGIS 軟體或 Matlab 即可求得各漂沙範圍之面積。

篩選像素門檻值,劃定漂沙範圍

依據上述方法,分析 2006 年衛星影像圖資,並量化各月份漂沙 範圍面積,藉以探討季節性漂沙變化特性。為較清楚描述台九線海岸 地形變化現象,茲以三區塊範圍來進行說明,分別為「南興至大武段」 「加津林至多良段」及「香蘭至三和段」,目前本文中僅呈現各區塊5 月及12月之漂沙範圍分析結果,如圖 2.11~圖 2.13 所示。而由各月 份漂沙範圍分析結果可量化其漂沙範圍面積,並繪製各區塊於各月份 漂沙面積分布變化 (參見圖 2.14),其顯示台九線海岸漂沙趨勢由 10 月份至隔年2月份時較為顯著,3月份至7月份較不顯著。由此可知, 海岸漂沙分布範圍與東北季風盛行時段關係密切。此外,2006 年 8 月 衛星影像拍攝時間,剛好接近「寶發颱風」事件發生時段,因而有漂 沙趨勢較為顯著之現象發生。

圖 2.11 南興至大武段漂沙範圍分析結果 (5 月)

圖 2.11(續) 南興至大武段漂沙範圍分析結果 (12 月)

圖 2.12 加津林至多良段漂沙範圍分析結果 (5 月)

圖 2.12(續) 加津林至多良段漂沙範圍分析結果 (12 月)

圖 2.13 香蘭至三和段漂沙範圍分析結果 (5月)

圖 2.13(續) 香蘭至三和段漂沙範圍分析結果 (12 月)

圖 2.14 台九線海岸漂沙變化分布圖

第三章 數值評估

3.1 數值模式建置

3.1.1 遠域波流模式

為得到計畫區波浪及暴潮水位設計條件,以遠域模式計算對計畫 區有顯著影響的颱風事件。本計畫遠域模式採用波潮流耦合模式 (ADCIRC+SWAN)進行臺灣周圍海域波浪、海流計算。該模式結合波 浪模式 SWAN (simulating waves nearshore)與海洋環流模式 ADCIRC (advanced circulation model),可同時考慮波與流之交互作用。茲就 SWAN 模式、ADCIRC 模式、計算條件及初步成果概說如下:

1. SWAN

由荷蘭 Delft 大學主導發展之波浪模式 SWAN (Booij 等人, 1996),具有第三代風浪模式的特徵,而在能量成長及消散項的參 數選擇上比其他模式更具彈性,可計算波浪在時間與空間領域中 之傳遞、淺化、波與波之間的非線性交互作用、波浪受風之成長、 碎波與底床造成波浪能量衰減及波浪受海流與地形變化而產生之 頻率位移與折射,因此模式具有預報近岸海域風浪之功能。此模式 也經過學者 Holthuijsen 等人(1997)和 Booij 等人(1998)應用實測風 浪資料加以驗證。SWAN 模式所用之控制方程式為求解二維的波 浪作用力平衡方程式 (action balance equation),如下:

$$\frac{\partial N}{\partial t} + \nabla_{\bar{x}} \cdot \left[\left(\overline{C}_s + \overline{U} \right) N \right] + \frac{\partial C_{\theta} N}{\partial \theta} + \frac{\partial C_{\sigma} N}{\partial \sigma} = \frac{S_{tot}}{\sigma}$$
(3.1)

$$\vec{k} = (k_x, k_y) = (|\vec{k}| \cos \theta, |\vec{k}| \sin \theta)$$
(3.2)

$$S_{xx} = \rho g \int \left(n \cos^2 \theta + n - \frac{1}{2} \right) E d\sigma d\theta$$
(3.3)

$$S_{xy} = S_{yx} = \rho g \int n \sin \theta \cos \theta E d\sigma d\theta$$
(3.4)

$$S_{yy} = \rho g \int \left(n \sin^2 \theta + n - \frac{1}{2} \right) E d\sigma d\theta$$
(3.5)

式(3.1)左側之第一項為運動波譜密度函數之時變項,第二與第 三項為傳導項,第四與第五項分別表示由於地形與洋流所造成的 波浪頻率位移與折射效應。 $\bar{x}=(x,y)$ 為平面方位,t為時間, σ 與 θ 分別表示成份波之頻率與角度。 $\bar{U}=(U,V)$ 為背景水平流速, \bar{C}_{g} 為 群波速度, $N(\sigma,\theta)=E(\sigma,\theta)/\sigma$ 為波浪作用力密度波譜(action density spectrum), $E(\sigma,\theta)$ 為能量密度波譜(energy density spectrum), $S_{tot}(\sigma,\theta)$ 表示波浪傳遞時可能發生之波浪能量成長、消散及非線性 交互作用等物理現象之源函數。在波浪成長與消散之源函數項中, SWAN 模式提供了許多選擇,包括風浪線性成長項、風浪指數成 長項、白沫消散項、四個波波非線性交互作用項、底床摩擦項、三 個波波交互作用項、碎波消耗項等。

式(3.3)至式(3.5)為底部輻射應力,n為群波速度與波速之比值, 而*C₀與C_o*可由分散關係式、波數守恆方程式與波數向量的非旋性 推導而得(即,式(3.6)與式(3.7)),其中,s為波傳方向,m表示垂直 波傳方向,h為水深。

$$C_{\theta} = \frac{d\theta}{dt} = -\frac{1}{k} \left(\frac{\partial \sigma}{\partial h} \frac{\partial h}{\partial m} + \vec{k} \cdot \frac{\partial \vec{U}}{\partial m} \right)$$
(3.6)

$$C_{\sigma} = \frac{d\sigma}{dt} = \frac{\partial\sigma}{\partial h} \left(\frac{dh}{dt} + \overline{U} \cdot \nabla_{\overline{x}} h \right) - C_{g} k \cdot \frac{\partial \overline{U}}{\partial s}$$
(3.7)

2. ADCIRC 模式

ADCIRC 為有限元素模式 (Westerink 等人, 1991),可以三角 網格擬合複雜的邊界外型。模式於外海開放邊界可以水面高程或 隨時間與空間變化之風場與氣壓場驅動,陸海交界處可處理因漲、 退潮所造成之網格濕、乾過程(wetting-drying processes)。本研究以 水深積分 ADCIRC 2DDI 模式 (Luettich 等人, 1992) 模擬臺灣周 圍流場與水位分布。模式守恒型態控制方程式如下:

$$\frac{\partial\varsigma}{\partial t} + \frac{\partial UH}{\partial x} + \frac{\partial VH}{\partial y} = 0$$
(3.8)

$$\frac{\partial UH}{\partial t} + U \frac{\partial UH}{\partial x} + V \frac{\partial UH}{\partial y} - fVH = -H \frac{\partial}{\partial x} \left[\frac{P_s}{\rho_0} + g(\varsigma - \alpha \eta) \right] + \frac{\tau_{sx}}{\rho_0} - \frac{\tau_{bx}}{\rho_0} + \frac{\tau_{wx}}{\rho_0}$$
(3.9)

$$\frac{\partial VH}{\partial t} + U \frac{\partial VH}{\partial x} + V \frac{\partial VH}{\partial y} + fUH = -H \frac{\partial}{\partial y} \left[\frac{P_s}{\rho_0} + g(\varsigma - \alpha \eta) \right] + \frac{\tau_{sy}}{\rho_0} - \frac{\tau_{by}}{\rho_0} + \frac{\tau_{wy}}{\rho_0}$$
(3.10)

式(3.8)中 ς 為自由液面,f為科氏力係數, $H = \varsigma + h$ 為總水深, P_s 為自由液面壓力, ρ_0 為海水密度, (τ_{bx}, τ_{by}) 、 (τ_{xx}, τ_{xy}) 、 (τ_{wx}, τ_{wy}) 分別 為x, y方向之風應力、底床摩擦力及波浪輻射應力, η 為牛頓潮汐 勢能, α 為有效地球彈性係數(通常設定為 0.69)。

3. 波流耦合模式

在進行波流耦合時,主要是將波浪模式 SWAN 生成底部輻射 應力傳給環流模式 ADCIRC 做為波浪輻射應力,如下:

$$\tau_{wx} = \frac{\partial S_{xx}}{\partial x} + \frac{\partial S_{xy}}{\partial y}$$
(3.11)

$$\tau_{wy} = \frac{\partial S_{yx}}{\partial x} + \frac{\partial S_{yy}}{\partial y}$$
(3.12)

波流耦合模式以相同三角格網進行計算時,若計算量龐大,可 採用平行計算以增進計算效率。平行計算時,網格會被分割成數個 子網格,並分送至多個核心分別進行計算,同時需對子網格邊界資 料修正,重複計算直至所求物理量(水位、流速等)達到收斂,如圖 3.1 所示。

圖 3.1 平行計算時各核心資料傳遞示意圖

3.1.2 波流與地形變遷模式

本項工作主要利用計畫區內過去既有之現場實測調查資料結果, 包括:海岸水深地形測量、河川流量及河口輸砂調查等,透過建立歷 史觀測數據資料庫,配合數值模式進行計畫區海域現況的波場、流場、 海岸輸砂等模擬。先以中尺度網格進行計算,其計算成果,配合歷史 資料蒐集及現勘結果,以進一步規劃小區域網格計算,探討海岸地形 侵淤變遷潛勢,並依數值模擬結果評估計畫區既有海岸防護設施之安 全性,提供日後擬定適當之海岸防護策略之參考。

本計畫以 SMS (Surface-water Modeling System)做為數值計算前 處理工具,以 ADCIRC 做為中尺度計算工具,並在局部區域採用 CMS (Coastal Modeling System) 模式計算,模式說明如下:

1. 近岸波浪模擬

近岸波場模擬採美國陸軍兵工團研發之 CMS-WAVE 對研究 區的波場進行數值模擬。CMS-WAVE 近岸波場模式是一個波譜模 式,利用含近岸繞射項之改良型波浪作用力守恆方程式(Mase, 2001),推算外海波浪傳遞至近海之折、繞射情形,同時將波浪淺 化、碎波和底床摩擦等效應代入考量,可分析單頻線性波浪經折、 繞射作用後的波高、相位、碎波及輻射應力分布,基本方程式如下:

$$\frac{\partial (C_x N)}{\partial x} + \frac{\partial (C_y N)}{\partial y} + \frac{\partial (C_\theta N)}{\partial \theta} = \frac{\kappa}{2\sigma} \left[\left(CC_g \cos^2 \theta N_y \right)_y - \frac{CC_g}{2} \cos^2 \theta N_{yy} \right] - \varepsilon_b N - S$$

$$N = \frac{E(\sigma, \theta)}{\sigma}$$
(3.14)

N為波浪作用密度函數,此函數為一個頻率 σ 及方向 θ 的函數。 $E(\sigma, \theta)$ 是波譜密度函數,代表每單位水表面積頻率間隔的波浪能量。 在實際海流環境存在的情況下,波浪作用密度為守恆,而波譜波密 度則非守恆(Bretherton and Garrett 1968; Whitham 1974),控制方程 式亦包含波繞射和能量耗散項 (Mase 2001; Mase 等人 2005a)。C 和 C_g 分別為波速及群波速度, x和y是水平面坐標, $C_x \cdot C_y n C_\theta$ 分 別為 $x \cdot y \mathcal{D} \theta$ 的特徵速度, $N_y n N_{yy}$ 表示關於N 對y的第一和第二 階導數, κ 為一個代表繞射強度之經驗參數, ε_b 是代表能量耗散的 波浪破碎參數,S為外加項(例如,風作用力,底床摩擦損失等) 及非線性波波交互作用項。

於小尺度計算時,採用定常邊界條件進行模擬。蒐集或再計算 分析歷史海象相關資料,經彙整分析後選擇具代表性之海象條件, 進行模擬以瞭解計畫區海域波場特性。

2. 近岸流場模擬

本計畫流場模擬採用美國陸軍兵工團研發之 CMS-FLOW 對 研究區的水動力進行數值模擬,模式計算探討包括本計畫區流場 分布及地形變遷侵淤趨勢,以下分兩部份介紹:

(1) 水動力模式理論

水動力模式控制方程式如下:

$$\frac{\partial(h+\eta)}{\partial t} + \frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} = 0$$
(3.15)

$$\frac{\partial q_x}{\partial t} + \frac{\partial u q_x}{\partial x} + \frac{\partial v q_y}{\partial y} + \frac{1}{2}g \frac{\partial (h+\eta)^2}{\partial x} = \frac{\partial}{\partial x} \left(D_x \frac{\partial q_x}{\partial x} \right) + \frac{\partial}{\partial y} \left(D_y \frac{\partial q_x}{\partial y} \right) + fq_y - \tau_{bx} + \tau_{wx} + \tau_{sx}$$
(3.16)

$$\frac{\partial q_{y}}{\partial t} + \frac{\partial u q_{y}}{\partial x} + \frac{\partial v q_{y}}{\partial y} + \frac{1}{2} g \frac{\partial (h+\eta)^{2}}{\partial y} = \frac{\partial}{\partial x} \left(D_{x} \frac{\partial q_{y}}{\partial x} \right) + \frac{\partial}{\partial y} \left(D_{y} \frac{\partial q_{y}}{\partial y} \right) - f q_{y} - \tau_{by} + \tau_{wy} + \tau_{sy}$$
(3.17)

水深平均流速與流量之間關係如下:

$$u = \frac{q_x}{h + \eta} \tag{3.18}$$

$$v = \frac{q_y}{h + \eta} \tag{3.19}$$

不考慮波浪的情況,床底剪應力表示如下:

$$\tau_{bx} = C_b u \left| U \right| \tag{3.20}$$

$$\tau_{by} = C_b v \left| U \right| \tag{3.21}$$

$$|U| = \sqrt{u^2 + v^2}$$
(3.22)

底床摩擦係數計算如下:

$$C_b = \frac{g}{C^2} \tag{3.23}$$

$$C = \frac{R^{\frac{1}{6}}}{n}$$
(3.24)

其中R為水力半徑,n為曼寧(Manning)係數。

當需考慮波浪作用力時,底床剪應力可表示為 (Nishimura, 1988):

$$\tau_{bx} = C_b \left\{ \left(U_{wc} + \frac{\omega_b^2}{U_{wc}} \cos^2 \alpha \right) u + \left(\frac{\omega_b^2}{U_{wc}} \cos \alpha \sin \alpha \right) v \right\}$$
(3.25)

$$\tau_{by} = C_b \left\{ \left(\frac{\omega_b^2}{U_{wc}} \cos \alpha \sin \alpha \right) u + \left(U_{wc} + \frac{\omega_b^2}{U_{wc}} \sin^2 \alpha \right) v \right\}$$
(3.26)

其中α是波浪行進方向與 x 軸的交角。

$$U_{wc} = \frac{1}{2} \left\{ \sqrt{\left| u^2 + v^2 + \omega_b^2 + 2\left(u \cos \alpha + v \sin \alpha \right) \omega_b \right|} + \sqrt{\left| u^2 + v^2 + \omega_b^2 - 2\left(u \cos \alpha + v \sin \alpha \right) \omega_b \right|} \right\}$$
(3.27)

$$\omega_{b} = \frac{\sigma H}{\pi \sinh\left[k\left(h+\eta\right)\right]} \tag{3.28}$$

其中σ是波浪角頻率,H是波高,k是波數。

表面風應力計算如下:

$$\tau_{wx} = C_d \frac{\rho_a}{\rho_w} W^2 \sin\theta \tag{3.29}$$

$$\tau_{wy} = C_d \frac{\rho_a}{\rho_w} W^2 \sin\theta \tag{3.30}$$

其中 C_a 為風的拖曳係數(wind drag coefficient), ρ_a 為空氣密度, ρ_w 為水體密度, W為風速, θ 為風向(風向角度為卡式坐標角度, 0度 為東方)。

風場引致之輻射應力可表示為:

$$\tau_{sx} = -\frac{1}{\rho_w} \left(\frac{\partial S_{xx}}{\partial x} + \frac{\partial S_{xy}}{\partial y} \right)$$
(3.31)

$$\tau_{sy} = -\frac{1}{\rho_w} \left(\frac{\partial S_{xy}}{\partial x} + \frac{\partial S_{yy}}{\partial y} \right)$$
(3.32)

其中波浪輻射應力的引入是透過與 CMS-WAVE 模組之結合,並根 據線性理論計算所得。當坐標系統中的 x 軸垂直於岸線時,輻射應 力表示如下(Smith 等人, 2001)

$$S_{xx} = \iint E(\omega, \alpha) \left[0.5 \left(1 + \frac{2k(h+\eta)}{\sinh 2k(h+\eta)} \right) (\cos^2 \alpha + 1) - 0.5 \right] d\omega d\alpha$$
(3.33)

$$S_{xy} = \iint \frac{E(\omega, \alpha)}{2} \left[0.5 \left(1 + \frac{2k(h+\eta)}{\sinh 2k(h+\eta)} \right) \sin 2\alpha \right] d\omega d\alpha$$
(3.34)

$$S_{yy} = \iint E(\omega, \alpha) \left[0.5 \left(1 + \frac{2k(h+\eta)}{\sinh 2k(h+\eta)} \right) (\sin^2 \alpha + 1) - 0.5 \right] d\omega d\alpha$$
(3.35)

其中S_{xx}為正向岸邊的動量,S_{xy}為平行海岸的動量,S_{yy}為沿岸流的 動量。

科氏力(Coriolis)如下:

$$f = 2\Omega\sin(\varphi) \tag{3.36}$$

其中 Ω 為地球旋轉的角頻率, ϕ 為緯度。

渦動黏滯係數為與水體中混擾強度相關的係數,於遠離碎波帶的區域,波浪引起的水體擾動微弱,故可忽略。此情況下渦動黏滯係數可表示為:

$$D_0 = \frac{1}{2} \left[1.156g \left(h + \eta \right) \frac{|U|}{C^2} \right]$$
(3.37)

相對的,碎波帶附近因碎波引起的水體擾動影響顯著,此時渦 動黏滯係數可表示如下:

$$D_w = \varepsilon_L \tag{3.38}$$

$$\varepsilon_L = \Lambda u_m H \tag{3.39}$$

$$u_{m} = \frac{gHT}{\left[2\lambda\cosh\left(\frac{2\pi(h+\eta)}{\lambda}\right)\right]}$$
(3.40)

實際上,碎波附近水體的混擾為三維現象,其物理機制無法反應於水深積分二維模式。前述渦動黏滯係數的引入乃為權宜的處 理方式,藉以在二維模式中考慮三維紊流的影響。

由前述說明可知碎波帶附近與遠離碎波帶區域的渦動黏滯係 數是不同的,為使模式計算時能連結兩區域,故引入一權重係數(θ_m) 如下:

$$D = (1 - \theta_m) D_0 + \theta_m D_w \tag{3.41}$$

$$\theta_m = \left(\frac{H}{h+\eta}\right)^3 \tag{3.42}$$

風吹造成的水體流動在淺水區較為明顯,因此必須考慮。風速 與摩擦力是影響空氣與表面水體間動能交換的主要因素,兩者可 表示為(Hsn, 1988):

$$W_z = \frac{W_*}{\kappa} \ln \frac{Z}{Z_0} \tag{3.43}$$

$$\tau_0 = \rho_a W_*^2 = \rho_a K_m \frac{\partial W}{\partial z} \tag{3.44}$$

基於自然穩定之大氣條件的假設,水面摩擦係數如下:

$$C_{10} = \left(\frac{\kappa}{14.56 - 2\ln W_{10}}\right)^2 \tag{3.45}$$

其中W10 為平均水面上方 10 m 處的風速,可表示如下:

$$W_{10} = W_z \left(\frac{10}{Z}\right)^{1/7}$$
(3.46)

(2) 輸砂控制方程式及地形變遷機制理論方法

CMS-FLOW 計算輸砂率及隨水深變化的輸砂率梯度,主要 有三種輸砂方程式可選擇:

a. Watanabe(1987)總輸砂量公式。

- b. Lund-CIRP (Camenen and Larson 2005, 2006)總輸砂量公式(結 合懸浮載及底床載)。
- c. 懸浮載的對流擴散方程式與 van Rijn (1998)或 Lund-CIRP 底 床載方程式耦合。對流擴散方程式應用 van Rijn (1998)或 Lund-CIRP 方程式中的參考濃度及砂的擴散率。

輸砂公式可適用於有/無波浪作用下。底部高程變化由砂的 連續方程式計算,其中輸砂率由特定的方程式計算後輸入。 Lund-CIRP 公式有平滑過渡的特性,例如碎波與非碎波間的過 渡區及純流的輸送及波流輸送的過渡區。

CMS-FLOW 考慮兩種形態限制: (a)堅硬底床(不可侵蝕底 床)及(b)底床坡度超過特定值的崩塌。如果存在沉積條件,堅硬 底床可允許砂堆積覆蓋在底床上。當兩單元間的底床坡度超過 特定的臨界坡度時,則產生崩塌。崩塌的算法是應用疊代方法 將物質向下移動,直到不再超過臨界坡度,同時保留沉積物體 積。

輸砂率是基於剪應力的概念,意味著底床粗糙度及產生的 摩擦係數是計算輸砂率的關鍵參數。輸砂公式通常是基於底床 粗糙度及相關剪應力的特定方程式發展而來(即校準數據)。因 此,當在 CMS-FLOW 中使用三個方程式計算輸砂率,採用稍 微不同的方法確定剪應力。以下部份中,討論了於不同輸砂公 式獲得的剪應力。此外,值得注意的是粗糙度及相關剪應力在 輸砂計算中與 CMS-FLOW 水動力計算不同。

由另外的模式計算的流場及波浪特性,會影響底床粗糙度 及剪應力,其會導致輸砂計算結果有所差異,惟輸砂計算的粗 糙度及剪應力並不會反饋水動力或波之計算。CMS-FLOW 在二 維水平坐標上計算的流速為(u,v),如果波對輸砂的貢獻可以忽 略不計(例如,正弦波),則淨輸砂方向為流的向量方向,流速大
小為 $U_c = \sqrt{u^2 + v^2}$ 。因此,波將有助於沉積物的移動及攪動,但 是需要平均的流來產生淨輸砂。

本文使用懸浮載的對流擴散方程式與 van Rijn (1998)或 Lund-CIRP 底床載方程式耦合,其理論作法如下:

a. 基本方程式

輸砂分成兩個部份,懸浮載及底床載。懸浮載及底床載的輸 砂方程式是基於局部剪應力。然而,在一些地方,懸浮載濃度在 時間及空間上的變化劇烈,例如:河口、入流口、航道及結構物 附近。在這種情況下,懸浮載濃度由對流擴散方程式控制。

CMS-FLOW 中,對流擴散方程式由水深平均的懸浮載輸砂獲得(如圖 3.2):

$$\frac{\partial (Cd)}{\partial t} + \frac{\partial (Cq_x)}{\partial x} + \frac{\partial (Cq_y)}{\partial y} = \frac{\partial}{\partial x} \left(K_x d \frac{\partial C}{\partial x} \right) \frac{\partial}{\partial y} \left(K_y d \frac{\partial C}{\partial y} \right) + P - D \qquad (3.47)$$

其中

C=水深平均下砂的濃度

 $d = 總水深(=h+\eta)$

h=靜水面水深

η=靜水面的水位變化

t=時間

 q_x =平行x軸之單寬流量(=ud)

 q_y =平行 y 軸之單寬流量(=vd)

u=平行x 軸之水深平均流速

v=平行y 軸之水深平均流速

K_x=砂在 x 方向的擴散係數

K,=砂在 y 方向的擴散係數

P=砂的再懸浮(向上砂通量)

D=砂的沉積率(向下砂通量)

翰砂時間步之懸浮砂的濃度由式(3.47)求解得。

圖 3.2 輸砂連續性定義(體積守恆)

由砂的連續方程式獲得底床高程改變:

$$\frac{\partial h}{\partial t} = \frac{1}{1-p} \left(\frac{\partial q_{bx}}{\partial x} + \frac{\partial q_{by}}{\partial y} + P - D \right)$$
(3.48)

上式中, q_{bx}為平行 x 軸之底床載輸砂率, q_{by} 為平行 y 軸之底床載 輸砂率, p 為砂的孔隙率。

在式(3.48)中, $\partial q_{lx} / \partial x + \partial q_{ly} \partial y$ 項包含底床載部分, P-D項則 符合懸浮載的部分。圖 3.2 為在一水柱定義砂的連續性,其中 q_{sx}
$$q_{sx} = Cq_x - K_x d \frac{\partial C}{\partial x}$$
(3.49)

$$q_{sy} = Cq_{y} - K_{y}d\frac{\partial C}{\partial y}$$
(3.50)

初始模擬砂的濃度、底床載及懸浮載設置為零,接著隨時間 更新。

b. 再懸浮率及沉積率

對流擴散模式由式(3.48)之再懸浮及沉積率之間的差異計 算懸浮載導致的底床高程變化。再懸浮及沉積率也應用在式 (3.47)的底床邊界條件。底床邊界條件指定在平均底床高程以上 的任意高度^a:

$$P = -\varepsilon \frac{\partial c}{\partial z}\Big|_{z=a} = c_a w_f \tag{3.51}$$

$$D = c_0 w_f \tag{3.52}$$

其中c為在給定高度下的懸浮平衡濃度,z為垂直坐標。c_a 及c₀皆為z=a處定義之參考濃度。因為砂向上之通量取決於底床 剪應力,c_a由局部水動力條件計算的底床剪應力得到。CMS-FLOW中c_a的計算方式取決於選擇 van Rijn 或 Lund-CIRP 模式。 砂向下的通量則取決於上部水柱的濃度,因此c₀由式(3.47)的解 指定。

假設懸浮濃度在平衡的情況下($\partial c/\partial t = 0$, $\partial u/\partial x = \partial v/\partial y = 0$, $\partial c/\partial x = \partial c/\partial y = 0$),則懸浮濃度的基本方程式可寫成:

$$cw_f + \varepsilon \frac{\partial c}{\partial z} = 0 \tag{3.53}$$

透過適當的混和係數ε可解析求解此方程式,並以下列形式 獲得懸浮濃度之垂直分布。

$$c(z) = c_0 F(z) \tag{3.54}$$

其中 F(z)為垂直濃度分布函數。參考濃度 c₀與水深平均濃度 C 的 關係為:

$$C = \frac{1}{d-a} \int_{a}^{d} c_0 F(z) dz$$
(3.55)

其中通過引入轉換參數 β_a , c_0 可寫成以下形式:

$$c_0 = \frac{C}{\frac{1}{d-a} \int_a^d F(z) dz} = \frac{C}{\beta_d}$$
(3.56)

懸浮載造成之底床高程變化基於兩種類型的參考濃度差異: $P-D=(c_u-c_0)w_f$ (3.57)

該等式表示當 $c_a > c_0$ 則侵蝕,當 $c_a < c_0$ 則堆積。

在對流擴散模式中,有三種指定 c_a 及 c_0 (即 $^{\beta_d}$)的方法。其中 兩種基於 van Rijn 方程式(van Rijn, 1985),另一種基於 Lund-CIRP 方程式(Camenen and Larson, 2006)。表 3-1 統整這些方法 的一般特性。

參考濃度 c_a 在 van Rijn 方程式中表示為:

$$c_{a} = 0.015 \frac{d_{50}}{a} \left(\frac{\tau_{b,\max} - \tau_{cr}}{\tau_{cr}} \right)^{1.5} d_{*}^{-0.3}$$
(3.58)

$$\tau_{b,\max} = \sqrt{\left[\tau_m + \tau_w \cos(\phi)\right]^2 + \left[\tau_w \sin(\phi)\right]^2}$$
(3.59)

其中*a*為參考高度,τ_{s,max}為最大底床剪應力,τ_m為一個波浪週期 下的波流平均剪應力,τ_w為波浪底床剪應力,φ為波流夾角。

方法	參考濃度	說明
指數分布	式(3.58)	快速計算。
		傾向高估輸砂率。
		可用於一些測試。
van Rijn 分布	式(3.58)	需要大量的計算時間。
		提供與 van Rijn(1985)相同的結果。
Lund-CIRP 分布	式(3.58)	快速計算。
		新發展的輸砂方程式。

表 3-1 再懸浮及沉積率的計算特性

與流相關之剪應力計算:

$$\tau_{c} = \frac{\rho_{w}k^{2}}{\left[1 + \ln\left(k_{s}/30d\right)\right]^{2}}U_{c}^{2}$$
(3.60)

與波相關之剪應力計算:

$$\tau_w = \rho_w \frac{f_w}{2} U_w^2 \tag{3.61}$$

$$f_{w} = \exp\left[5.5\left(A_{w} / k_{s}^{'}\right)^{-0.2} - 6.3\right]$$
(3.62)

在此k。為粗糙度高度,定義為:

$$k_{s} = k_{sd} + k_{ss}$$
 (3.63)

其中d為整體水深,定義為 $d = h + \eta$, k_{sd} 為尼古拉斯等值糙度高度:

$$k_{sd} = 2.5d_{50} \tag{3.64}$$

$$k_{ss} = 5d_{50}\theta_i \tag{3.65}$$

其中θ_i為希爾茲數(下標*i*=*c*,*w*分別表示為流及波浪)。流及波浪的希爾茲數表示式為:

$$\theta_c = \frac{\tau_c}{\rho(s-1)gd_{50}} \tag{3.66}$$

$$\theta_w = \frac{\tau_w}{\rho(s-1)} g d_{50} \tag{3.67}$$

式(3.65)必須與剪應力同時求解,因為粗糙度取決於應力。 利用近似多項式發展顯式預測方程式得到精確解,以避免計算 剪應力時迭代的耗時。

在 van Rijn 模式中底床濃度定義在高度 a 的位置: $a = \max(0.5H_r, 0.01d)$ (3.68) 其中 H_r 為漣漪高度。如果漣漪出現,則總粗糙度高度修改為: $k_s = k'_s + k_{sf}$ (3.69)

van Rijn 方程式指定為 $k_{sf} = 20(H_r^2/L_r)$, Lund-CIRP 方程式指定為 $k_{sf} = 7.5(H_r^2/L_r)$ 。

從垂直混和係數獲得轉換參數β_d以決定c₀。van Rijn(1985) 提出在只考慮流或波的情況下混和係數分布(如圖 3.3),與流相 關的混和係數表示為:

$$\varepsilon_{c} = \varepsilon_{c,\max} - \left(1 - \frac{2z}{h}\right)^{9} \quad z < 0.5h$$

$$\varepsilon_{c} = \varepsilon_{c,\max} = 0.25ku_{*c}h \quad z > 0.5h$$
(3.70)

其中usc為與流相關之底床剪力速度,表示為:

$$u_{*c} = \frac{k}{-1 + \ln\left(\frac{30d}{k_s}\right)} U_c \tag{3.71}$$

係數 9 由下式獲得:

$$\begin{aligned} \vartheta &= -0.25 \frac{U_w}{|U|} + 2 \quad 0 \le \frac{U_w}{|U|} \le 4 \\ \vartheta &= 1 \qquad \qquad \frac{U_w}{|U|} > 4 \end{aligned} \tag{3.72}$$

圖 3.3 流和波造成的混和係數垂直分布

與波相關的混和係數表示為:

$$\varepsilon_{w} = \varepsilon_{w,bed} \qquad z < \delta$$

$$\varepsilon_{w} = \varepsilon_{w,bed} + \left(\varepsilon_{w,\max} - \varepsilon_{w,bed}\right) \left(\frac{z - \delta}{0.5h - \delta}\right) \qquad \delta < z \le 0.5h$$

$$\varepsilon_{w} = \varepsilon_{w,\max} \qquad z > 0.5h$$
(3.73)

其中

$$\varepsilon_{w,bed} = 0.00065D_*\alpha_{br}\delta u_w$$

$$\varepsilon_{w,max} = 0.035\alpha_{br}\frac{hH}{T}$$
(3.74)

$$\alpha_{br} = 5 \left(\frac{H}{h}\right) - 2 \quad H/h \ge 0.6$$

$$\alpha_{br} = 1 \qquad H/h < 0.6 \qquad (3.75)$$

參數 δ 為距底床高度給定為 $\delta=3H_r$, H為示性波高,T為示性週期。如果波流共存,混和係數為:

$$\varepsilon_{cw} = \sqrt{\varepsilon_c^2 + \varepsilon_w^2} \tag{3.76}$$

透過 ε_{cw} 表示式,可以導出式(3.54)之濃度分布及計算轉換參數 β_d 。在對流擴散模式中,實現了兩種基於 van Rijn 方程式的方法計算 β_d 。一種是基於指數分布的平均水深混和係數 $\overline{\varepsilon}_{cw}$,另一種為原始 van Rijn 分布,通過式(3.54)數值積分得到 β_d 。假設懸浮濃度為指數分布,解析得 β_d 為:

$$\beta_{d} = \frac{1}{d-a} \frac{\overline{\varepsilon}_{cw}}{w_{f}} \left\{ 1 - \exp\left[-\frac{w_{f}}{\overline{\varepsilon}_{cw}}(d-a)\right] \right\}$$
(3.77)

其中

$$\bar{\varepsilon}_{cw} = \frac{1}{d-a} \int_{a}^{d} \varepsilon_{cw} dz \tag{3.78}$$

Lund-CIRP 方程式計算參考濃度及砂的擴散也應用於對流 擴散模式中。用於 c_R 及 ε 的方程式,在這部分會呈現來描述 Lund-CIRP 方程式。

c. 水平擴散係數

對流擴散模式中水深平均濃度的水平擴散係數*K_x*及*K_y*由 Elder (1959)提出方程式計算:

$$K_{xo} = 2.93u_{*c}d
 K_{yo} = 5.93u_{*c}d
 (3.79)$$

在碎波帶,波浪在橫向混和有顯著的貢獻,渦流黏滯係數預 期是波浪特性的函數。對於對流擴散模式的水平擴散係數,應用 Kraus and Larson (1991)提出的碎波帶混和在水動力計算中。

$$K_w = \varepsilon_L \tag{3.80}$$

其中 ε_L 描述波谷水位下的横向混和(Smith, Larson, and Kraus, 1993), 並表示為(Kraus and Larson 1991):

$$\varepsilon_{L} = \Lambda u_{w} H \tag{3.81}$$

其中Λ為橫向混和長度之經驗係數。

通過加權混和係數在 CMS-FLOW 中,表示碎波帶的擴散及 碎波點向外海的海洋擴散之間的過渡段,指定為:

$$K_{x} = (1 - \theta_{m})K_{xo} + \theta_{m}K_{w}$$

$$K_{y} = (1 - \theta_{m})K_{yo} + \theta_{m}K_{w}$$
(3.82)

其中加權參數θ"表示為:

$$\theta_m = \left(\frac{H}{h+\eta}\right)^3 \tag{3.83}$$

d. 底床載輸砂率

底床載輸砂率可由 van Rijn (1998)或 Lund-CIRP (Camenen and Larson 2005)方程式計算。在 van Rijn 方程式中,底床載由下式得到,不包含底床粗糙度:

$$q_{b} = 0.1 d_{50} u_{*c} \left(\frac{\tau_{s, \max} - \tau_{cr}}{\tau_{cr}} \right)^{1.5} d_{*}^{-0.3}$$
(3.84)

Lund-CIRP 方程式計算底床載在前面已提到不再贅述。

e. 底床載及懸浮載輸砂率的縮放因子

分配 Lund-CIRP 總輸砂方程式及對流擴散方程式以調整底 床載及懸浮載輸砂率。縮放因子直接應用於輸砂率的係數,不取 決於底床載輸砂率及懸浮載輸砂率。因此,底床載輸砂率可以與 懸浮載輸砂率分別縮放。縮放因子的建議值為0.1~4。縮放因子 為1時為預設值,將無調整輸砂率。當縮放因子小於1時,將 減少輸砂率;大於1則為增加輸砂率。於不確定的外力或初始 條件時,縮放因子可調整模式預測輸砂率及率定地形變遷。

f. 砂的連續方程式

時間平均輸砂率型式的連續方程式,可計算總輸砂方程式 及對流擴散方程式的底床載方程式的水深變化。這個方法需要 定義兩個時間間隔,一個用於計算瞬時輸砂率 dt_{sed} ,另一個用於 計算平均輸砂率及地形變遷 dt_{morph} 。在時間間隔為 dt_{sed} 時,計算定 向瞬時輸砂率 $q_{tot,x}$ 和 $q_{tot,y}$;在時間間隔為 dt_{morph} 時,計算x和y方 向上的時間平均輸砂率 $\overline{q}_{tot,x}$ 和 $\overline{q}_{tot,y}$ 。通過計算修改的時間平均傳 輸率 \overline{q}_{tot} 和 $\overline{q}_{tot,y}$,完成增加下坡輸砂率及減少上坡輸砂率 (Watanabe, 1987):

$$\bar{q}_{tot,x} = \bar{q}_{tot,x} - D_s \left| \bar{q}_{tot} \right| \frac{\partial h}{\partial x}$$
(3.85)

$$\overline{q}_{tot,y} = \overline{q}_{tot,y} - D_s \left| \overline{q}_{tot} \right| \frac{\partial h}{\partial y}$$
(3.86)

其中D_s為經驗坡度係數,一般介於5~30, q_{tot}為時間平均輸砂率。 這些方程式為了底床變化,在連續方程式中加入有效的傳輸擴 散。

砂的連續方程式求解以時間間隔為*dt_{morph}*之地形變化,總輸 砂方程式為:

$$\frac{\partial h}{\partial t} = \left(\frac{1}{1-p}\right) \left(\frac{\partial \overline{q}_{tot,x}}{\partial x} + \frac{\partial \overline{q}_{tot,y}}{\partial y}\right)$$
(3.87)

在剛性邊界,輸砂率梯度通過邊界的單元設為零。

對流擴散方程式中,砂的連續方程式於式(3.48)提及。時間 間隔計算瞬時輸砂率及平均輸砂率和地形變遷與總輸砂率模式 的時間間隔相同,即分別為dt_{sed}及dt_{morph}。此外,式(3.48)的底床 載在坡度效應下,調整為:

$$\bar{q}_{bx} = \bar{q}_{bx} - D_s \left| \bar{q}_b \right| \frac{\partial h}{\partial x}$$
(3.88)

$$\bar{q}_{by} = \bar{q}_{by} - D_s \left| \bar{q}_b \right| \frac{\partial h}{\partial y}$$
(3.89)

其 $\dot{q}_{b} = \sqrt{\overline{q}_{bx}^{2} + \overline{q}_{by}^{2}}$ 。最後砂的連續方程式求解地形變遷,時間間 隔為 dt_{morph} 時,改寫為:

$$\frac{\partial h}{\partial t} = \frac{1}{1 - p} \left(\frac{\partial \overline{q}_{bx}}{\partial x} + \frac{\partial \overline{q}_{by}}{\partial y} + \overline{P} - \overline{D} \right)$$
(3.90)

包含底床載及懸浮載。在剛性邊界, 輸砂率通過邊界單元設 為零。

水動力模式(CMS-FLOW)及波浪模式(CMS-WAVE)屬於雙向耦合模式,在水動力模式耦合計算過程中,波浪模式計算之輻

射應力結果,作為水動力流場計算之外加作用力條件。而波浪模式計算過程中,其水位及流場條件則隨時由水動力模式計算結果更新。

圖 3.4 為模式架構及各模式間相互關係,地形水深更新後, 再依同樣的流程逐時計算後續不同潮位相位、河川流量歷線下 的波流場與海底地形變化。簡言之,模式的設計係仿照實際海岸 底質與懸移質被波流移動,隨水動力的強弱發生漂浮、沉積,而 海底地形變化後將反過來影響海流的複雜過程。

3. 河川輸砂模擬 (PTM, Particle Tracking Model)

本計畫河川輸砂模擬部分,採用 PTM 進行模擬計算,透過粒徑、濃度與流量給定,可模擬河川上游補注之砂量。本模式計算結果可以 CMS 搭配,計算出海岸底床變形情況。該模式相關理論介 紹參見附件二。

圖 3.4 二維水動力與地形變化數值模式架構圖

3.2 模式設置

3.2.1 遠域模式設置

波流耦合模式(ADCIRC+SWAN)近年成功應用於美國東海岸颱風 暴潮與波浪預測工作,亦由本團隊成功應用於計算颱風侵臺時期臺灣 海域暴潮與颱風波浪分布。遠域模式設置說明如後,計算域西起110E 東至150E, 南起10N 北至50N,計算地形採用美國國家地球物理資 料中心(NGDC)發佈的全球1、2 分格網數值地形資料 (ETOPO1/ETOPO2),網格分布如圖3.5,格網設置資訊如表3-2。模 式所使用之颱風風場,由中央氣象局發布颱風警報單上的中心位置、 中心氣壓、風速、移動速度等觀測數據,代入螺旋模型風場(Rankin vortex model, RVM)計算而得。

$$\frac{V_r}{V_m} = \begin{cases} \left(R/R_m \right)^7 \exp\left[7\left(1 - R/R_m \right) \right] &, R < R_m \\ \exp\left[\left(0.0025R_m + 0.05 \right) \left(1 - R/R_m \right) \right], R \ge R_m \end{cases}$$
(3.91)

$$R_m = 28.52 \tanh[0.0873(\varphi - 28)] + 12.22 \exp\left(\frac{P_c - P_0}{33.86}\right) + 0.2V_f + 37.22$$
(3.92)

$$V = V_r + 0.5V_f \cos\phi \tag{3.93}$$

$$\Phi = \begin{cases} 10^{\circ} , 0 < R \le R_m \\ 10^{\circ} + 75^{\circ} (R/R_m - 1), R_m < R \le 1.2R_m \\ 25^{\circ} , 1.2R_m < R \end{cases}$$
(3.94)

式(3.91)中 V_r 為距離颱風中心R的風速; V_m 為最大風速; R_m 為最大風速 時的颱風半徑。式(3.92)中 ϕ 為颱風中心所在的緯度; P_c 為颱風中心氣 壓; P_0 為平常狀態的大氣壓力,此處為 1013.3 hPa; V_f 為颱風中心移 動速度。合成風速V可以式(3.93)表達,其中 ϕ 為 $V 與V_f$ 間的夾角。而 颱風通過海域時所產生的偏轉則可以式(3.94)描述。

圖 3.5 大域計算網格示意圖

表 3-2 遠域模式網格配置表

項目	設定值
模擬範圍	40°X 40°(東經 110~150 北緯 10~50)
格網大小	臺灣周圍 0.015°海域邊界 0.5°
格網數目	Nodes=50,812
	Elements=98,946

3.2.2 中域模式設置

中域模擬之目的為檢視整個台九線區域,附近海域之流場及波浪 傳遞情形,圖 3.6 為中域尺度模擬範圍,南起安朔路段北至臺東市, 計算長度為 65 km,海側邊界離岸約 15 km。計算模式採用 ADCIRC, 最外側海域邊界格點布置為 2 km,於海岸河口則以 50 m 網格點布置, 模式格點配置資訊如表 3-3。進一步依據公路高程以及歷史受災事件, 以及利用中域波浪傳遞計算,及河川輸砂趨勢模擬結果,將台九線分 成三個主要地形以波浪衝擊研究。

項目	設定值
模擬範圍	65 km X 15 km
格網大小	陸側 100 m 海域外側 2 km
格網數目	Nodes=20,141
	Elements=39,285

表 3-3 中域模式網格配置表

計畫區分成三個區塊計算,由南至北分別為:南興至大武段、加 津林至多良段以及香蘭至三和段,相關地理位置及地形水深如圖 3.7~ 圖 3.9,格網基本配置如表 3-4,而如何選定此三段做為近岸尺度劃定 原則,請參閱 3.4.3 節。

南興至大武段 位置 9 km X10 km 模擬範圍 25 m X 25 m 格網大小 360 X 400 格網數目 位置 加津林至多良段 模擬範圍 8.8 km X 11 km 25 m X 25 m 格網大小 353 X 440 格網數目 香蘭至三和段 位置 8.6 km X 14 km 模擬範圍 25 m X 25 m 格網大小 344 X 560 格網數目

表 3-4 近域模式網格配置表

圖 3.7 南興至大武路段模擬網格範圍以及水深地形

圖 3.8 加津林至多良路段模擬網格範圍以及水深地形

圖 3.9 香蘭至三和路段模擬網格範圍以及水深地形

3.3 水動力模式驗證及地形變遷模式調校

為確認本計畫數值模式之適用性,本章節會進行水動力模式之驗 證與地形變遷模式調校作業。除定性驗證外,為更精確檢定模式計算 計畫區域之波、潮、流等水動力變化之合理性,亦採用定量方式來進 行模式驗證。定量驗證方法是採用吻合度係數 D(agreement coefficient) 及平均偏差 P (averaged deviation)來檢核實測資料與模擬資料之差異 程度(Willmott, 1981),分別定義如下:

$$D = 1 - \frac{\sum_{n=1}^{N} (P_n - O_n)^2}{\sum_{n=1}^{N} (|P_n - O| + |O_n - O|)^2} ; P = \frac{\sum_{n=1}^{N} (P_n - O_n)}{\sum_{n=1}^{N} O_n}$$
(3.95)

P_n為預測值;O_n及O分別為量測值及其平均值;D=1表示完全吻合,P=0表示沒有偏差,以下各小節盡可能利用此方式,量化模式計算結果與實測資料之吻合度。模式驗證與調校結果說明如后:

3.3.1 水動力模式驗證

1. 波浪

統計上而言,計畫區海域較大的波高盛行在冬季季風期間及 颱風侵臺期間。因此本計畫以颱風期間所觀測到的水位、暴潮偏差 及波高做為遠域模式的驗證對象。本計畫以 2016 年的莫蘭蒂颱風 (Meranti)及 2017 年尼莎颱風(Nesat)做模式驗證說明。

中央氣象局所發佈的 2016 年莫蘭蒂颱風及 2017 年的尼莎颱 風路徑如圖 3.10 及圖 3.11。依 3.1 及 3.2 節所述進行颱風水位及波 流場計算,其數值與本計畫蒐集之水位觀測站 (富岡漁港、大武漁 港、蘭嶼潮位站) 及波浪觀測站 (花蓮港、台東浮標、綠島波浪站、 台東外洋浮標),各測站位置如圖 3.12 所示,而實測數據比較結果 整理如圖 3.13~圖 3.18 所示。整體驗證結果量化統計如表 3-5 與表 3-6。

圖 3.12 觀測站位置示意圖

圖 3.13 2016 莫蘭蒂颱風期間水位數值與觀測值驗證

圖 3.14 2016 莫蘭蒂颱風期間暴潮偏差數值與觀測值驗證

圖 3.15 2016 莫蘭蒂颱風期間波高數值與觀測值驗證

圖 3.16 2017 尼莎颱風期間水位數值與觀測值驗證

圖 3.17 2017 尼莎颱風期間暴潮偏差數值與觀測值驗證

圖 3.18 2017 尼莎颱風期間波高數值與觀測值驗證

驗證項目		吻合度係數	平均偏差
水位	富岡潮位站	0.957	0.11
	大武潮位站	0.977	-0.02
	蘭嶼潮位站	0.936	0.35
日山	富岡潮位站	0.852	0.45
泰 湖 伯兰	大武潮位站	0.978	-0.03
俪左	蘭嶼潮位站	0.655	1.26
	花蓮港	0.926	0.18
颱風	台東浮標	0.928	0.21
波高	綠島	0.737	0.92
	台東外洋浮標	0.913	0. 25

表 3-5 2016 莫蘭蒂颱風期間水位數值與觀測值驗證

表 3-6 2017 尼莎颱風期間水位數值與觀測值驗證

驗證項目		吻合度係數	平均偏差
水位	富岡潮位站	0.993	-0.03
	大武潮位站	0.913	0.16
	綠島潮位站	0.977	0.05
暴潮	富岡潮位站	0.900	-0.15
偏差	大武潮位站	0.666	0.06
颱風 波高	花蓮港	0.908	-0.11
	台東浮標	0.710	0.23
	台東外洋浮標	0.864	-0. 05

2. 潮位及流速

中尺度模擬之水動力驗證,採用臺東海岸(太麻里段)環境營造 改善計畫(99年)實測海流之結果,該海流站名(TMW1),設置於太 麻里溪口約20m處位置,相關地理位置如圖3.19。該海流資料觀 測時間為2010/07/27~2010/08/21,觀測結果顯示該區海流以向南側 流向居多,海流結果玫瑰圖顯示於圖3.20。

水動力模式計算之水位邊界條件利用日本全球潮位模式 NAO99b 作為潮位條件,計算驗證結果如圖 3.21。顯示模式之水動 力計算大致能夠符合近岸實測的海流趨勢,進一步將模式驗證量 化成果如表 3-7。

圖 3.19 TMW1 海流站觀測位置圖

圖 3.20 TMW1 海流站監測結果玫瑰圖

圖 3.21 TMW1 實測值與模式計算之海流流速結果驗證比較

表 3-7 太麻里 TMW1 海流测站實測值與模擬值量化比對結果

驗證項目		吻合度係數	平均偏差	
	水位	0.992	0.01	
TMW1	東西向流速	0.858	-0.07	
	南北向流速	0.849	-0.02	

3.3.2 地形變遷模式調校

採用「100 年度臺東海岸(太麻里段)環境營造改善計畫」之實測 地形結果與底質粒徑(D₅₀)條件資料,進行地形變遷模式調校,俾利提 升本計畫地形變遷模式之可靠度。

模式計算使用之地形須結合其他單位之實測資料,例如陸地部分 採用交通部的5米 DEM 資料,而外海水深超過30公尺之地形則利

3-39

用科技部臺灣周圍 200 公尺精度的資料。

依據蒐集到的資料結果顯示,香蘭至太麻里段其底質粒徑特性, 於高低潮線砂灘D₅₀介於 0.43~5.11 mm、均勻係數Cu介於 1.6~11.7, 海域部分在水深 3~20 m 處的D₅₀介於 12~50.4 mm,整體太麻里地區 底質分布如圖 3.22。由以上數據顯示,高、低潮線的粒徑分布極不均 勻,在數值計算時使用底質空間分布之平均粒徑 5 mm 進行計算。

波浪條件則利用臺東實測波浪資料,分析其代表性波浪作為計算條件,代表性波浪計算方式參見第五章,初步地形變遷侵淤趨勢計算結果如圖 3.23。

數值計算結果比對位置以太麻里河口地形為例,數值計算成果初 步與2006/11~2007/06之地形侵淤變化比較,成果如圖3.24。實測地 形侵淤結果顯示,太麻里溪河口為侵蝕之趨勢,位於太麻里河口南側 香蘭地區略有淤積情形。目前數值計算結果也反映出此現象,未來可 再針對季節性波浪資料進行探討,並與相關計畫之實測季節性地形侵 淤結果進行比對。

圖 3.22 太麻里地區海岸底質中值粒徑(D₅₀)分布圖

圖 3.23 太麻里地區海岸地形變遷分布圖

圖 3.24 太麻里地區海岸地形變遷結果與實測資料比對

(左) 實測資料結果 (右)數值計算結果左圖像資料來源:101 臺東海岸(太麻里段)環境營造改善計畫(2-2)

3.4 數值模式評估

3.4.1 數值模式評估架構

為使本計畫評估作業能夠完整,必須運用到遠域模式、中域模式 及近域模式三種數值評估方式,其各數值模式架構與理論、模式設置 及驗證與調校均已於上述中進行完整說明。本章節則針對各模式於本 計畫之評估內容進行說明,以利瞭解各模式與各評估作業之連結性。 圖 3.25 為本計畫數值評估流程圖與相關評估作業內容,其中可概分 為三階段,分述說明如下:

1. 遠域模式:

運用 ADCIRC 與 SWAN 耦合模式進行大範圍模擬計算,產出 成果包含暴潮偏差與波浪資訊。本計畫透過此模式進行歷史颱風 暴潮偏差及颱風波高計算(民國 78 至民國 106 年之颱風事件),計 算結果透過頻率分析方式推求波浪設計條件,並透過氣象局潮位 資料與暴潮偏差結果推算設計水位,藉以做為本計畫設計條件之 重要資訊。

2. 中域模式:

透過遠域求得設計條件結果做為中域模式之邊界條件,計算 中域範圍內波流場變化,再配合 PTM 模式計算河川輸砂分布範圍。 藉由中域模式計算成果,再配合台九線易致災區資料蒐集成果,可 明確劃定致災區模擬範圍,及後續近域尺度模擬範圍界定。

3. 近域模式:

近域模式主要是透過 CMS 與 PTM 來進行各近域區塊的數值 模擬,其中包含水動力模擬 (近岸波流場與水位變化) 與地形變遷 模擬。各近域區塊模擬結果將提供後續針對台九線海岸公路災害 特性分析加值運用。

圖 3.25 數值評估流程圖

3.4.2 遠域模式 - 設計條件評估

1. 歷史颱風暴潮偏差及颱風波高計算

參考臺東海岸防護計畫(第八河川局,106年),可知臺東海岸 防護結構設計年限為50年。為評估台九線整體安全,需針對海域 50年重現期暴潮偏差及颱風波浪設計條件進行推估。為達上述目 的,需就歷史颱風事件進行模擬。

中央氣象局於民國 78~106 年發布警報的颱風,共計 171 場, 但發布警報的颱風未必對計畫區皆有顯著影響。一般來說,暴風範 圍在颱風眼邊緣是颱風風力最強的地方,然後愈向外風愈小,自颱 風中心向外至平均風速達 50 km/hr (即7級風風速下限)處的距離 稱為暴風半徑。在暴風半徑內的區域,即為暴風範圍。颱風的暴風 半徑平均約為 200 至 300 km,故本計畫以臺東為中心,將通過該 處半徑 300 km 範圍內之歷史颱風軌跡視為對計畫區有顯著影響的 颱風事件。經篩選後,對計畫區影響較顯著之颱風事件共計 101 場。

本計畫針對 101 場颱風進行波流耦合模擬,計算成果整理如表 3-8。為決定臺東地區代表性設計波高與暴潮偏差,選擇多良村 外海水深約 1038 m 處之計算結果進行頻率分析。因該處颱風波浪 未受近岸地形影響,可做為颱風波浪入射近岸之代表值。

時間	颱風名 稱	最接近計畫 區時的最低 氟壓(hPa)	最接近計畫區 時的近中心最 大風速(m/s)	暴潮偏差 (m)	波高 (m)
1989091120	莎拉	950	41.16	0.19	7.81
1990051908	瑪麗安	990	23.15	0.09	3.75
1990062308	歐菲莉	970	33.44	0.20	6.81
1990081914	楊希	955	38.58	0.09	4.39
1990090720	黛特	970	33.44	0.19	6.67
1991071902	艾美	930	48.87	0.24	12.48
1991081723	愛麗	985	25.72	0.05	2.60
1991092302	耐特	950	41.16	0.47	14.96
1991103014	露絲	998	18.01	0.07	4.72
1992062723	芭比	945	43.73	0.11	5.91

表 3-8 影響計畫區歷次颱風代表性設計波高與暴潮偏差計算成果表

	邸田夕	最接近計畫	最接近計畫區	昆油历关	よう
時間	爬風石	區時的最低	時的近中心最	、 泰潮偏差 (m)	波向 (m)
	竹	氣壓(hPa)	大風速(m/s)	(11)	(111)
1992090420	歐馬	975	30.87	0.15	4.97
1992083002	寶莉	980	25.72	0.15	2.41
1992092214	泰德	985	25.72	0.18	3.53
1993091202	亞伯	980	28.29	0.10	4.39
1994071020	提姆	940	46.30	0.28	10.78
1994080314	凱特琳	990	23.15	0.10	3.49
1994080717	道格	935	48.87	0.16	8.38
1994090108	葛拉絲	960	38.58	0.09	4.67
1994100911	席斯	930	48.87	0.12	6.14
1995060808	荻安娜	998	18.01	0.04	1.42
1995083014	肯特	945	43.73	0.13	7.06
1995092211	賴恩	945	43.73	0.26	9.73
1996052308	凱姆	994	20.58	0.05	2.00
1996072614	葛樂禮	965	33.44	0.22	7.45
1996073123	賀伯	950	41.16	0.13	6.55
1997082902	安珀	955	38.58	0.25	9.14
1998071002	妮蔻兒	998	18.01	0.06	1.87
1998080411	奧托	970	33.44	0.17	4.69
1998092808	楊妮	998	18.01	0.05	1.85
1998101602	瑞伯	960	38.58	0.36	9.07
2000070908	啟德	985	25.72	0.23	5.94
2000082223	碧利斯	930	51.44	0.31	11.90
2000091008	寶發	990	23.15	0.06	3.10
2000110102	象神	965	36.01	0.42	6.08
2001051314	西馬隆	990	23.15	0.08	2.30
2001062308	奇比	965	33.44	0.12	4.24
2001071114	潭美	998	18.01	0.13	3.28
2001072920	桃芝	960	38.58	0.18	6.17
2001091708	納莉	994	18.01	0.09	2.53
2001092614	利奇馬	975	30.87	0.45	6.77
2002071002	娜克莉	988	20.58	0.07	1.64
2003042408	柯吉拉	994	23.15	0.05	2.68
2003060220	南卡	990	25.72	0.07	2.65
2003061723	蘇迪勒	970	33.44	0.07	2.90
2003080320	莫拉克	994	23.15	0.18	3.24
2003081920	梵高	996	18.01	0.03	1.57
2003090120	杜鵑	950	41.16	0.27	11.15
	颱風名	最接近計畫	最接近計畫區	昆油历关	小 古
------------	-----	---------	----------	-------------	------------
時間		區時的最低	時的近中心最	恭潮偏差 (m)	波尚 (m)
	柟	氣壓(hPa)	大風速(m/s)	(111)	(111)
2003110302	米勒	992	18.01	0.15	3.86
2004060914	康森	960	38.58	0.14	4.97
2004070114	敏督利	975	30.87	0.23	5.94
2004071414	康柏斯	996	20.58	0.05	2.76
2004091114	海馬	998	18.01	0.02	1.05
2004102502	納坦	950	41.16	0.19	7.16
2004120408	南瑪都	992	23.15	0.20	5.80
2005071811	海棠	955	41.16	0.24	7.25
2005090105	泰利	950	41.16	0.19	7.37
2005092214	丹瑞	990	23.15	0.04	1.60
2005100205	龍王	945	43.73	0.25	8.74
2006071314	碧利斯	970	30.87	0.07	2.46
2006072420	凱米	975	33.44	0.31	7.15
2006080902	寶發	992	20.58	0.13	2.96
2006091520	珊珊	925	54.02	0.10	4.54
2007080720	帕布	975	33.44	0.42	14.96
2007080902	梧提	994	18.01	0.10	2.07
2007081805	聖帕	950	41.16	0.31	9.79
2007091808	韋帕	925	51.44	0.09	4.97
2007100617	柯羅莎	950	43.73	0.17	6.06
2007112714	米塔	994	18.01	0.05	2.21
2008071711	卡玫基	960	38.58	0.10	3.32
2008072805	鳳凰	960	38.58	0.21	7.07
2008091308	辛樂克	945	48.87	0.14	6.40
2008092811	蔷蜜	915	56.59	0.18	8.55
2009071720	莫拉菲	975	30.87	0.07	1.82
2009080717	莫拉克	955	38.58	0.14	6.02
2010090108	萊羅克	990	23.15	0.07	2.28
2010090914	莫蘭蒂	994	20.58	0.05	1.33
2010091911	凡那比	975	33.44	0.30	6.57
2011051017	艾利	998	18.01	0.04	0.86
2011052805	桑達	940	46.30	0.13	6.46
2011082905	南瑪都	985	28.29	0.31	8.66
2012062020	泰利	994	20.58	0.05	2.10
2012062817	杜蘇芮	998	18.01	0.03	0.98
2012080205	蘇拉	970	33.44	0.11	4.19
2012082402	天秤	955	38.58	0.65	10.27

時間	颱風名 稱	最接近計畫 區時的最低 氣壓(hPa)	最接近計畫區 時的近中心最 大風速(m/s)	暴潮偏差 (m)	波高 (m)
2012092805	杰拉華	920	51.44	0.13	6.27
2013071305	蘇力	960	38.58	0.11	6.18
2013081620	潭美	1002	15.43	0.07	2.20
2013082823	康芮	980	28.29	0.08	2.84
2013092114	天兔	925	46.30	0.21	10.09
2014072223	麥德姆	965	36.01	0.24	7.57
2014092114	鳳凰	985	23.15	0.18	4.20
2015051114	紅霞	960	41.16	0.17	6.73
2015080808	蘇迪勒	965	36.01	0.22	7.37
2015082302	天鵝	955	41.16	0.12	5.18
2015092820	杜鵑	965	38.58	0.17	7.13
2016070802	尼伯特	920	46.30	0.87	13.99
2016091408	莫蘭蒂	890	61.73	0.48	15.48
2016091623	馬勒卡	940	43.73	0.15	5.74
2016092717	梅姬	955	38.58	0.22	6.79
2017072914	尼莎	960	41.16	0.13	4.96
2017073020	海棠	990	20.58	0.18	2.89

2. 頻率分析

頻率分析工作依據「海岸工程學」及「臺北港波浪條件推算及 設計波高基準之探討」(運研所,95年)極值統計方法及步驟,所用 套配模式則根據 CEM(Coastal Engineering Manual, 2002) 之建議, 選用適合用以分析長期波浪極值之極值 I型(FT-I型,又稱 Gumbel) 和 Weibull 之累積機率分布函數。兩分布函數、相關統計參數及分 析過程說明如後:

(1) 累積機率分布函數

a. 極值 I 型 (Gumbel) 分布

$$W_{10} = W_z \left(\frac{10}{Z}\right)^{1/7}$$
(3.96)

$$F(x) = e^{-e^{\frac{x-B}{A}}}, -\infty < x < \infty$$
(3.97)

$$f(x) = \frac{1}{A}e^{\frac{x-B}{A} - e^{\frac{x-B}{A}}}$$
(3.98)

b. Weibull 分布

$$F(x) = 1 - e^{-e^{-\left(\frac{x}{A}\right)^{k}}}, 0 \le x < \infty$$
(3.99)

$$f(x) = \frac{k}{A} \left(\frac{x}{A}\right)^{k-1} e^{-\left(\frac{x}{A}\right)^{k}}$$
(3.100)

其中x為樣本變數, f(x)為機率密度函數(probability density function), F(x)為累積機率函數 (cumulative probability function)。 $A \times B$ 為描述機率密度函數形狀之參數: A為變異數 (variance), 稱為尺度參數 (scale parameter); B與樣本平均值 (mean)有關, 稱為位置參數 (location parameter), 樣本平均值及樣本標準偏差 如表 3-9 所示。k為形狀常數, k 值大小決定機率函數之尖扁形 狀。

表 3-9 分布函數相關統計量

分布函數	樣本平均值	樣本標準偏差		
極值Ⅰ型分布	$B + A\gamma$	$\pi A/\sqrt{6}$		
Weibull 分布	$B + A\Gamma(1+1/k)$	$A\Big[\Gamma\big(1+2/k\big)-\Gamma^2\big(1+1/k\big)\Big]^{1/2}$		
註:Γ()為 Gamma 函數,γ為 Euler 數				

(2)函數參數推定

分布函數中參數以最大概似法(MLM)進行推定。為使推定 法滿足不偏性(unbiasedness)及有效性(efficiency),採用合田 (1990)提出之極值分布。當選取N個資料時,首先將N個資料依 大小順序排列,再計算各順位之機率Fm,機率計算公式如下:

$$F_m = 1 - \frac{m - \alpha}{N + \beta}, \ m = 1, 2, \cdots, N$$
 (3.101)

其中極值 I 型分布及 Weibull 中 α , β 如表 3-10。

計算時由變數相關統計量(表 3-10)求得各分布函數參數, 再依各順位機率F_m反求所對應之變數。多良村外海水深約 1038 m處之暴潮偏差及颱風波高頻率分析結果如圖 3.26~圖 3.27。

表 3-10 計算樣本順位機率之 α 及 β 值

分布函數	α	β
極值Ⅰ型分布	0.44	0.12
Weibull 分布	$0.2+0.24/\sqrt{k}$	$0.2+0.23/\sqrt{k}$

圖 3.26 多良村外海水深約 1038 m 處暴潮偏差以 Weibull 分布套配結果

圖 3.27 多良村外海水深約 1038 m 處颱風波高以 Weibull 分布套配結果

(3) 信賴檢定

臺東海域各重現期所對應的暴潮偏差及颱風波高整理如表 3-11。為整體評估各排序機率下之暴潮偏差與波高統計誤差,本 計畫以均方根誤差(RMSE)做為檢定標準。各統計套配吻合度優 劣乃依據各統計分布理論曲線與實際數據之均方誤差進行優選, 誤差越小,則判定其吻合度越佳。比較結果顯示多良村外海水 深約 1038 m 處暴潮偏差及颱風波高,皆以 Weibull 分布的套配 吻合度最佳。多良村外海水深約 1038 m 處之 50 年暴潮偏差與 颱風波高分別為 0.59 m 及 15.71 m。

由上述演算流程可求得本計畫設計條件數值,雖然設計潮 位實際呈現僅為單一數值,但可配合特定因子分別解析計算, 藉以推求評估所需條件數值。就海岸防護設施之設計基準而言, 為因應不同海岸特性、防護需求、災害風險...等,普遍採用之 設計潮位方式來做評估。本計畫就設計潮位之定義,針對上述

3-51

各潮位考量因子選擇適用值,並將各項考量潮位因子疊加計算。 亦即:

設計潮位 = 天文潮 + 氣象潮 + 長期海水位變化量

上式中,天文潮採用平均高潮位計算,根據中央氣象局臺東潮 位站資料(1976-2017年)顯示,其值為0.73m,氣象潮則按各重 現期暴潮偏差推估結果代入;至於長期海水位變化量部分,本 計畫研析時則暫不納入考量。故彙整上述遠域數值計算結果可 知,本計畫設計條件分別為颱風波高15.71m;颱風時刻風浪週 期為3.83*(颱風波高)^{0.5};設計潮位為1.32m。

表 3-11 不同重現期下多良村外海水深約 1038 m 處之暴潮偏差與 波高推算值

	套配模式	圴士田铝羊	不同重現期下統計值			
		均力松缺左	5年	10 年	20 年	50 年
暴潮	極端值I	0.17	0.47	0.51	0.55	0.59
偏差 (m)	Weibull	0.02	0.39	0.46	0.52	0.59
颱風 波高 - (m)	極端值I	2.31	11.41	12.25	12.94	13.70
	Weibull	0.29	11.31	12.76	14.09	15.71

3.4.3 中域模式 - 致災區範圍劃定

本計畫主要標的是針對台九線海岸公路進行災害特性分析,此需 要以水動力與地形變遷模擬結果為背景資料進行分析。為顧及災害特 性分析所需背景資料之精確性,得藉由較細緻的網格系統來進行數值 計算,以產出較為可靠的結果進行特性分析。然,細緻網格系統所需 計算量及時間較大,因而本計畫將計畫區域劃分為若干近域範圍進行 較細緻網格系統模擬,藉以兼顧計算效率與精確度。近域(致災區)範 圍之劃定則需以「資料蒐集分析成果」與「中域模式模擬結果」做為 依據,來進行合理的劃定作業。其中,資料蒐集分析成果主要以往昔 致災區域資料與台九線公路高程為參考依據;中域模式模擬則是以岸 前波高與河川輸砂趨勢模擬結果為考量。由前述台九線易致災區分析 (參見 2.5 節)中可知,南興、多良及三和路段均有公路溢淹發生之記 錄;而大武漁港則受長年淤積災害影響;南興和太麻里太麻里(包含香 蘭段)則有海岸侵蝕之相關研究記錄,依上述所蒐集資料做為致災區 劃定之參酌。另依據本計畫蒐集台九線樁點資料,可繪製海岸公路高 程分布圖(參見圖 3.28),其中除高架路段外,有部分路段高程較低, 尤以「南興段至大武段」(圖中A紅框範圍)及「加津林至多良段」(圖 中B紅框範圍)最為顯著。

中域模式用於主要包含由設計條件模擬之岸前波高與河川輸砂 趨勢兩種評估。其中,設計波浪條件模擬結果如圖 3.29,由圖可見臺 東因其海岸水深較深,外海波浪傳遞至近岸時波浪能量不易衰減,整 體相位平均波高衰減程度不大。於此計算結果中,擷取公路海岸的岸 前波高(參見圖 3.30)顯示,加津林至多良段(B 紅框範圍)與香蘭至三 和段(C 紅框範圍),其岸前波高均於較大;而河川輸砂模擬方面(輸砂 給定條件參見 2.4.2 節),計畫區域內大多數河川輸砂其底質皆沉積於 河口位置。於計畫區南部河川對岸邊比較有補注趨勢,圖 3.31 所示。

綜上,彙整「致災區資料分析」、「公路高程分布」、「岸前波高」 及「河川輸砂趨勢」等結果,已將計畫區域劃定為「南興至大武段」、 「加津林至多良段」及「香蘭至三和段」等三個致災區範圍(即近域模 擬區塊),其均可參見圖 3.28、圖 3.30 及圖 3.31 中紅框區塊(A、B 及 C 三個紅框區塊),而劃定此三段之原因如

表 3-12 所述。

表 3-12 致災區範圍(近域模擬區塊)劃定原因

路段原因項目	А	В	С
背景資料分析	該路段曾有發生公 路溢淹、海岸侵蝕及 港口淤積之災害。	該路段曾有發生公 路溢淹之災害。	該路段曾有發生公 路溢淹及海岸侵蝕 之災害。
公路高程分析	於計畫區中,屬公路 高程較為偏低路段。	於計畫區中,屬公路 高程較為偏低路段。	部分公路高程偏高, 惟仍有偏低路段。
岸前波高	僅靠北側區域波高 較高。	整路段岸前波高偏 高路段。	部分路段岸前波高 偏低,但仍有波高偏 高路段。
河川輸砂趨勢	「朝庸溪」和「大武 溪」輸砂趨勢會相互 影響。	「大竹溪」影響該區 較為顯著,北側「金 崙溪」輸砂趨勢無明 顯影響該區域。	僅「太麻里溪」輸砂 趨勢影響較顯著。
綜合劃定因素	 1.過未報告報告報告報告報告報告報告報告報告報告報告報告報告報告報告報告報告報告報告	 1.接高大橋周軍 二、法局、 二、法局、 二、法局、 二、、 二、、 二、、 二、 <l< td=""><td> 三和海岸以北(含 美和區域),台九線 以內不。 四滴納入劃設範 面面。 和軍之方動 2.三年重潮溢着す。 3.往昔/侵蝕情況發 生。 4.「太麻里溪」輸砂趨 教影響較為顯著, 因而重範圍。 </td></l<>	 三和海岸以北(含 美和區域),台九線 以內不。 四滴納入劃設範 面面。 和軍之方動 2.三年重潮溢着す。 3.往昔/侵蝕情況發 生。 4.「太麻里溪」輸砂趨 教影響較為顯著, 因而重範圍。

圖 3.28 台九線海岸公路樁點高程分布圖

圖 3.29 中尺度範圍 50 年設計條件波場計算結果

圖 3.30 公路岸前波高計算結果

3.4.4 近域模式 - 災害特性分析方法建立

透過中域模式數值模擬成果與資料蒐集成果進行分析,已劃定本 計畫近域模式模擬區塊及範圍。近域模式主要運用 CMS 與 PTM 兩 模式來進行水動力與地形變遷模擬計算,進一步加值分析計算成果, 俾利後續特性分析作業。

為使本計畫災害特性分析標的更為明確,因而以「公路溢淹」、 「侵蝕災害」及「淤積災害」三種災害類型做為後續災害特性分析之 方向,各災害類型之相關定定義與災害特性分析之流程如圖 3.32 所 示,而詳細分析工作則分別於第四章「公路溢淹致災區段特性分析」 (公路溢淹災害)及第五章「沿岸流與沿岸中長期地形變遷特性分析」 (侵蝕與淤積災害)。其中,海岸侵蝕災害為「海岸防護整合規劃及海 岸防護計畫擬訂作業」(水利署,2017年)訂定的四大海岸災害之一。 因此,於侵蝕災害分析中,亦會引用海岸侵蝕災害潛勢分級原則,進 行海岸侵蝕潛勢等級給定。海岸侵蝕災害潛勢分級原則如下:

- 高潛勢:海岸侵蝕地區且近5年平均高潮線每年後退達5公尺以上 (或經中央主管機關調查評估為海岸嚴重侵蝕地區)
- 2.中潛勢:海岸侵蝕地區且近5年平均高潮線每年後退未達5公尺, 但達2公尺以上(或經中央主管機關調查評估為海岸侵蝕 地區)

圖 3.32 本計畫災害分類、定義與分析內容

第四章 公路溢淹致災區段特性分析

本章節主要探討台九線海岸公路易產生「公路溢淹」災害之區段, 並進行該災害類型之相關分析。依據所擇取海岸段環境與水深地形特 徵,藉由潮位與波浪等之海象蒐集資料,配合本計畫近域劃分範圍, 進行各區域海岸線況波浪數值模擬與分析,並透過相關溯上公式推算 海岸公路沿岸波浪溯升之情況及越波量,藉以檢討現有海岸防護設施 之安全性海水溯上之情況。最後,再就各項分析結果,針對易致災區 段進行公路安全性檢討,以作為後續公路安全以及海岸環境營造規劃 應用,分述如下:

4.1 海岸現況波浪數值模擬分析

為瞭解現況海岸波浪場分布與海岸線公路受浪情形,以美國陸軍 工兵團近岸水動力模式 CMS,藉由現況設計條件模擬結果分析計畫 區海岸問題。計算條件採用設計條件(參閱第三章);波向則以正向入 射海岸為主,並採開放邊界進行模式演算,計算範圍則以本計畫近域 範圍區塊進行各分區域計算模擬。

茲分別以「南興至大武段」、「加津林至多良段」及「香蘭至三 和段」此三段近域範圍於設計條件下之計算結果進行探討與說明,相 關分述如后所示:

1. 南興至大武段

圖 4.1 至圖 4.3 分別為南興至大武段模擬波場、平均水位與流 場分布圖,其顯示於設計條件下,相位平均波高由外海至近岸發展, 波浪至近岸有衰減現象發生,波高分布以大武溪以北區域岸邊波 高較高,於近岸約仍有 5 m~10 m 之波高分布;大武漁港以南因 地形較緩,受碎波消散影響,其近岸波高分布較低,約5m 左右; 而至南興路段區域,其波高分布則約略變高,約5 m 至 7.5 m 範 圍。而平均水位分布圖顯示,大武溪以北因沿岸水深較深、坡度地

4-1

形較陡,使其平均水位分布較為平緩,當波浪襲擊時,因淺化效應, 使波浪碎波消能之現象較不顯著,易導致波浪於未消能之情況下 直接衝擊沿岸;而大武漁港周圍水深較淺,地形較為平緩,使之沿 岸水位分布較高,波浪由外海進入近岸時,會因地形平緩影響,使 之碎波消能,其近岸波高分布亦會較低。此外,透過流場分布結果 可知,南興至大武段於設計條件波浪作用下,沿岸流會呈現南北均 流至大武漁港的現象。此亦為颱風事件時,漂沙懸浮質會往大武漁 港集中,導致經常發生漁港淤積災害之可能因素。

圖 4.4 分別為南興至大武段剖面波高、流速以及水位分布圖, 斷面位置如圖所示,斷面編號由南至北遞增,整體結果顯示此區由 於海底地形較平緩,故波浪至近岸衰減現象較明顯,一般而言此段 海岸公路距海岸仍有一小段距離。

2. 加津林至多良段

圖 4.5 至圖 4.7 分別為加津林至多良段模擬波場、平均水位與 流場分布圖,其顯示於設計條件下,相位平均波高由外海至近岸發 展,波浪至近岸幾乎無衰減現象發生。除大竹溪以北 (420K+000~ 418K+000 路段) 於近岸處波高有消減現象產生 (波高分布約 3 m ~5m) 外,其餘路段近岸區域之波高分布皆在幾近無衰減情況下, 直接衝擊沿岸 (波高分布約 10m~15m以上)。由此可知,該路段 公路若高程較低,易發生波浪越堤現象,進而導致公路溢淹之災情。 而由平均水位分布圖中顯示,僅大竹溪以北因沿岸水深較淺、坡度 地形較緩,使其平均水位分布較為偏高,當波浪襲擊時,易因淺化 效應,使波浪碎波消能,使之波高分布較低;而其餘路段沿岸水位 分布則較為平緩。因該路段地形水深起伏較小,其整體流場分布結 果可知,大竹溪以南因水深較深,其設計條件波浪造成的沿岸流速 較小;大竹溪北側因地形有緩變趨勢,因而於沿岸時流速變化較大 產生渦流現象較為顯著。

圖 4.8 分別為加津林至多良段剖面波高、流速以及水位分布圖, 由剖面圖顯示,此區海岸地勢相當陡峭,故波浪傳遞至近岸幾乎無

4-2

衰減現象發生,整體海岸岸前波高普遍達10米左右,且公路位置 相當貼近於海岸。由此可見,於颱風期間此地區可能為較危險路段 之一。

3. 香蘭至三和段

圖 4.9 至圖 4.11 分別為香蘭至三和段模擬波場、平均水位與 流場分布圖,其顯示於設計條件下,因地形均屬水深較深之區域, 使其相位平均波高由外海至近岸發展,波浪至近岸幾乎無衰減現 象發生,近岸波高分布約有 12 m~15 m 以上,而 396K+500~ 399K+500 路段則因沿岸有部分平緩地形,使之波浪碎波消能而有 波高分布較低的情況。而平均水位分布圖顯示,除 396K+500~ 399K+500 路段有較高平均水位分布外,其餘區域大都呈現較為平 緩情況。因該路段近岸水深較深,因而設計條件波浪所產生之沿岸 流速較不顯著,流向大概由太麻里溪口往南北方向流動,而於 398K+000 路段處,有離岸流發生之現象,此亦有提升沿岸漂沙流 失之可能性。

圖 4.12 分別為香蘭至三和段剖面波高、流速及水位分布圖, 圖中顯示,此段海岸平均溯升可達7公尺左右,且此段海岸公路位 置大部分離海岸較遠,海岸受波浪溯升溢淹情形的機會較少。

圖 4.1 南興至大武段設計條件波場分布圖

圖 4.2 南興至大武段設計條件平均水位分布圖

圖 4.3 南興至大武段設計條件波浪引致流場變化分布圖

圖 4.5 加津林至多良段設計條件波場分布圖

圖 4.6 加津林至多良段設計條件平均水位分布圖

圖 4.7 加津林至多良段設計條件波浪引致流場變化分布圖

加津林至多良段設計條件剖面圖 圖 4.8(續 2)

圖 4.11 香蘭至三和段設計條件波浪引致流場變化分布圖

4.2 公路安全性檢討

台9線南迴公路部份路段因緊鄰海岸,根據美國公路聯邦總署 (FEHA)之研究系列報告「Hydraulic Engineering Circular No. 25」 (Douglass and Krolak, HEC-25, 2008)的定義屬於海岸公路。台9線海 岸公路東側以護岸(revetment)結構與海岸相連,西側多與山坡相銜接, 其整體安全性分析包括海岸工程和地質工程兩部分。本計畫以海岸工 程分析為主,地質相關資料則整理既有報告說明。依 HEC-25 (2008) 所述,影響海岸公路包含波浪水理特性(波浪溯升/越波分析)、海岸結 構穩定性、地質特性等,針對上述性質分(1)公路溢淹水理特性分析、 (2)海岸結構物安定性分析、(3)地質特性分析及(4)海岸公路整體穩定 性說明如後:

4.2.1 公路溢淹水理特性分析

由 4.1 節計算結果,可得到岸邊結構物前之波高分布(例如:堤前 波高),本節再進一步配合波浪溯升評估公式,對公路側海岸計算其波 浪溯上高度及越波量。最後,再針對「公路溢淹」災害類型進行特性 分析,藉以研提台九線海岸公路具有公路溢淹災害潛勢區段,並提供 該區段相關越波量資訊,俾供未來工程實施和防災策略參酌。

波浪遇到海岸阻擋時所有能量轉換成位能,於海堤面產生溯升 (run-up)現象。所謂溯升 (R) 乃指波浪打上海堤面之最高點與靜水面 之垂直高差。若海堤堤頂低於溯升高時,波浪越過堤頂越入堤後之現 象稱為越波(Overtopping),單位時間越過堤頂之水體積稱為越波量(q), 參見圖 4.13。

圖 4.13 溯升及越波示意圖

資料來源:海岸防護設施設計準則(水規所,2010)

本計畫採用美國陸軍兵工團 (簡稱 CHL) 海岸管理手冊 (簡稱 CEM, 2006)整理 Van der Meer 等人 (1992) 抛石堤實驗數據所提出 之公式,並考慮海岸坡面粗糙折減因子進行溯升高計算,以下簡稱 CEM 溯升公式(CEMR)(CEMR, 2006)。

$$R_{2\%}/H_{0} = \begin{cases} 1.5\gamma_{f}\gamma_{h}\gamma_{\beta}\xi_{eq}, & 0.5 < \xi_{eq} \le 2.0\\ 3.0\gamma_{f}\gamma_{h}\gamma_{\beta}\gamma_{b}, & \xi_{eq} > 2.0 \end{cases}$$
(4.1)

其中 γ_f 、 γ_h 、 γ_β 、 ξ_{eq} 分別為堤面粗糙係數、水深對溯升影響係數、波 浪入射折減係數及等效碎波參數。而越波量計算則應用於公路溢淹研 究上,並依據 Van der Meer 等人 (1992) 提出依溯升高與堤頂出水高 $差(R_{2\%} - R_c)計算越波量,其計算式如下式:$

 $q = 8 \times 10^{-5} \sqrt{g H_s^3} \exp\left[3.1 \left(R_{2\%} - R_c\right) / H_s\right]$ (4.2)

欲完全防止波浪不越波,勢必使公路或海堤高極高。因此得容許 不發生災害之少量安全越波量越波,稱為容許越波量。而路堤工程之 功能為保護道路填土區之安全,為減少越波量及增加堤後道路之利用 性,應妥善規劃路堤之頂高,以有效控制越波量。圖 4.14 為容許越波 量界定範圍,依設計規範可由海堤種類、保護工型式及安全需求訂定 容許越流量。其中,結構安全所需之越流量主要考量堤後填土區之安 全,依護岸之容許越波量約在 5×10⁻² (cms/m)以下;交通安全之越流 量則至少需低於 5×10⁻⁴ (cms/m) (黃學美和朱志誠, 2013),透過該越 波量計算及容許越波量範圍界定,可將後續「公路溢淹」災害特性分 析結果進行量化,以利瞭解各災害潛勢區域之致災程度。

依據本計畫近域數值模擬結果(設計條件波高分布),並配合上 述溯升公式可計算出公路側海岸波浪溯上高度,再藉由公路單樁高程 資料比對,及本計畫災害類型定義方法檢定(參考圖 3.32),則可劃設 出各具有「公路溢淹」災害潛勢之路段。再透過越波量計算方式,則 可估算各潛勢區域之越波量,並進一步探討其越波致災程度。茲以三 近域範圍分別進行說明:

圖 4.14 容許越波量界定範圍圖(資料來源: CEM, 2005)

1. 南興至大武段

圖 4.15 為南興至大武段「公路溢淹」災害潛勢分布圖,其顯 示大武漁港以北 435K+000~435K+500 路段間及 434K+000~ 434K+500 路段間均屬於災害潛勢區段,該兩區段溯升高度均約達 16 m,而公路高程分別約為 8 m 與 10 m,因而有導致公路溢淹災 害之可能性;大武漁港以南至南興路段,於 439K+500~441K+000 之間路段具災害潛勢特性,然該路段區域溯升高度較上述兩處偏 低約 10 m,惟因該區域公路高程均低於 10 m,導致仍有公路溢淹 災害之危機。

於圖 4.15 越波分析結果可知,各「公路溢淹」災害潛勢路段 中,435K+500 周圍區域越波量有大於 10⁻³ (cms/m) 現象發生,其 餘潛勢路段均介於 10⁻⁴~10⁻³ (cms/m)之間。由此顯示,各潛勢區段 均滿足護岸之容許越波量 (5×10⁻² (cms/m))以下,除了南興路段接 近臨界值外,其餘路段均未滿足交通安全之越流量(至少需低於 5×10⁻⁴ (cms/m))。

2. 加津林至多良段

圖 4.16 為加津林至多良段「公路溢淹」災害潛勢分布圖,該 區域為三區域中「公路溢淹」災害較為嚴重之路段,其顯示 421K+500~422K+000 路段間、422K+000~422K+500 路段間、 423K+500~425K+000 路段間及 425K+500~426K+000 路段間,均 有多處災害潛勢區段。其中,423K+500~424K+000 路段間溯升高 度較高(最高約達 15 m),且亦位於公路高程相對低處(最低高約 為 11 m),此處為易導致公路溢淹災害之區塊,必須謹慎關注。其 餘區段溯升高度均約低於 15 m;公路高程約 11 m~13 m 左右。

於圖 4.16 越波分析結果可知,各「公路溢淹」災害潛勢路段中,424K+000 周圍區域越波量有約於 5×10⁻² (cms/m),其餘潛勢路段均介於 10⁻³~2×10⁻² (cms/m)之間。由此顯示,除 424K+000 周圍潛勢區段未滿足護岸之容許越波量 (5×10⁻² (cms/m))以下外,其餘

路段大都符合,而各潛勢路段均未滿足交通安全之越流量(至少需 低於 5×10⁻⁴ (cms/m))。

往昔文獻中,亦有針對該區域進行公路溢淹災害分析(黃學美和朱志誠,2013)。其中該文獻評估易受浪襲路段均與本計畫評估 潛勢區域相似,惟其越波量評估均為滿足1×10⁻⁴(cms/m),未達1×10⁻⁵(cms/m)。其原因概為3各原因所致:

- a. 設計條件不同:本計畫估算 1989~2017 年颱風事件,所推得
 之 50 年重現期設計波高為 15.71 m;而該文獻設計波高採 13.4
 m,約低於本計畫 2.3 m 以上。
- b. 地形水深不同:兩研究所採用地形水深可能有所差異,導致 近岸波高分布不同。
- c. 溯升公式差異:然該文獻並無針對採用之溯升公式進行描述, 因而無法確認兩研究評估溯升高度之差異性。
- 3. 香蘭至三和段

圖 4.17 為香蘭至三和段「公路溢淹」災害潛勢分布圖,該區 域為三區域中「公路溢淹」災害潛勢區最少之路段,其顯示僅 395K+500 路段周圍為災害潛勢區段。主要原因為該區域公路高程 大多較高,使之溯升高度影響公路較小,395K+500 路段於此區域 中為公路高程較低路段,且離岸距離較近,使其納為「公路溢淹」 災害潛勢區域,其中溯升高度最高約達 10 m,且公路高程則略低 於 10 m。此外,407K+000 路段雖亦有相對高之溯升高度,惟其公 路段離灘岸較遠,因而並未納入「公路溢淹」災害潛勢區域之中。

於圖 4.17 越波分析結果可知,各「公路溢淹」災害潛勢路段 中,395K+500 路段越波量約為 2×10⁻³ (cms/m),其滿足護岸之容許 越波量 (5×10⁻² (cms/m))以下,惟未滿足交通安全之越流量(至少需 低於 5×10⁻⁴ (cms/m))。因此,於颱風事件發生時,該處仍有車輛仍 須注意通行安全,避免浪襲越波導致生命安全受到威脅。

圖 4.15 南興至大武路段「公路溢淹」災害潛勢分布圖

圖 4.16 加津林至多良路段「公路溢淹」災害潛勢分布圖

圖 4.17 香蘭至三和路段「公路溢淹」災害潛勢分布圖

4.2.2 海岸結構物安定性分析

針對台9線海岸公路特性,可參考 HEC-25(2008)報告所建議的護 岸進行保護。一般來說,護岸結構特徵為坡面緊鄰陸地而結構最上部 高程略高於陸地者,居中隔絕海陸形成明顯高程落差,可分為反波式 及直立消波式。而為了有效降低入射至護岸的波浪能量以確保護岸堤 堤趾基礎不受波浪沖擊掏刷,常在護岸前設置海堤堤趾基礎保護工, 一般為塊石或兩排以上的消波塊。故整體護岸安定性分為護岸前坡坡 體的塊石安定性分析及護岸臨海測堤趾基礎保護工安定性分析。相關 分析及理論基礎可參考 HEC-11 (Brown and Clyde, 1989)、美國陸軍工 兵團海岸工程手冊 (CEM)及「海岸防護設施設計準則(草案)海堤篇」 (水規所,2010年)。

1. 塊石安定性分析

依「海岸防護設施設計準則(草案)--海堤篇」(水規所,2010年) 所述,針對各段護岸前坡進行安定性分析(被覆層安定重量),以瞭 解最小被覆層安定重量,針對塊石重量較被覆層安定重量小,則增 加護岸塊石重量或是加勁處理。一般海岸工程設計多採用豪德森 公式(4.1)檢核護坡塊石所需的重量 (PIANC, 1992)。

$$M = \frac{\rho_s H^3}{K_D \Delta^3 \cot \alpha} \tag{4.3}$$

上式中M:護坡塊石或是消波塊重量; $\Delta \stackrel{A}{\beta} \rho_s / \rho_w - 1$, ρ_s 、 ρ_w :分別 為拋放消波工(石塊=2.65 T/m³,混凝土=2.3 T/m³)及水體之密 度(海水=1.03 T/m³);H:堤趾設計波高(50 年重現期設計波高),美 國工兵團海岸工程保護手冊(1984)建議採 $H = H_{1/10} = 1.27H_s$; K_d :安定 係數,值大表示石塊安定性高; α :海堤坡度。依「海岸防護及環境 復育規劃參考手冊」(水規所,2010 年)建議方塊 $K_d = 6.5 \sim 7.5$ 、菱形 塊 $K_d = 7.0 \sim 8.0$ 、雙T 塊 $K_d = 15.8 \sim 31.8$ 、拋石保護工則設定為 3.0。

2. 堤趾基礎保護工安定性分析

為瞭解海堤堤趾基礎保護工大小是否足以抵禦波浪作用,參 考「海岸防護及環境復育規劃參考手冊」(水規所,2010年)使用 Hales Houston(1983)公式進行海堤基礎安定尺寸推估。堤趾保護工 可防止外坡平行滑動及堤趾沖刷。美國工兵團海岸工程保護手冊 (1984)提議砂灘之最大沖刷深度h_s=H_{max}=1.8H_s。陡坡堤之護坦長度 不短於 2 倍波高,緩坡堤之護坦則至少與波高相同。Hales Houston(1983)公式如下:

$$\frac{H_b}{\Delta D_{50}} = (17.5 \sim 28.5) \left(\frac{B_p}{L_s}\right)^{2/3} \approx 20 \left(\frac{B_p}{L_s}\right)^{2/3} = 20 \left(\frac{B_p}{T\sqrt{gh_s}}\right)$$
(4.4)

式中, $\Delta = r_s/r_w - 1$ 為塊石相對密度,其中 r_s 為堤趾基礎單位體積重 (石塊為 2.65 t/m³;混凝土為 2.3 t/m³), r_w 為水單位體積重(1.03 t/m³); D_{50} 為中值粒徑; $H_b \approx 0.78h_s$ 為碎波波高; $L_s = T\sqrt{gh_s}$ 為堤前波 長,T為深海波浪週期; B_p 為外坡延長長度; h_s 為沖刷水深。 護岸前坡塊石最小重量及堤趾基礎保護工最小粒徑計算成果 如圖 4.18~圖 4.20。整體而言,護岸前坡塊石最小重量及堤趾基礎 保護工最小粒徑整體趨勢相同,局部極值集中在越波區段及地形 侵蝕區域,詳細分析說明於 4.2.4 節。

圖 4.18 南興至大武段塊石最小重量及堤趾基礎保護工最小粒徑分 布圖

圖 4.19 加津林至多良段塊石最小重量及堤趾基礎保護工最小粒徑 分布圖

圖 4.20 香蘭至三和段塊石最小重量及堤趾基礎保護工最小粒徑分 布圖

4.2.3 地質特性分析

為說明台9線海岸公路地質特性,蒐集「消能式結構物應用於臺 灣港灣設施保全之研究(4-4)」(運研所,2013年)整理如後:

1. 邊坡地質特性

台9線海岸地形之分類屬於岩岸,邊坡下海灘成分大多偏粗, 以礫灘為主。公路位址之土壤性質多屬石質土夾雜有沖積土及崩 積土,地層有八里灣層砂岩、砂頁岩互層、都鑾山層、沖積層、八 里灣層礫岩、蕃薯寮層、安山岩質崩移岩塊、港口石灰岩層等。由 於多處海岸公路位址之地質狀況不佳,土壤抗剪能力不足,加上岩 性多處為節理不連續且長久風化、破碎之不穩定岩面,故極易引發 落石、崩塌與邊坡滑動等問題,進而造成海岸公路路基或路面的安 全性問題。 2. 逕流及土石沖蝕邊坡問題

東部海岸公路多沿陡峭山壁闢建,因此其路側之上邊坡坡度 皆非常陡峭,加上地質非常不穩定,故常於颱風或豪雨季節發生土 石或岩塊崩塌之事件。此種情形輕者交通中斷,若是崩落之土石體 龐大或岩石巨大,則會有壓毀路面並損及側邊坡之穩定,進而威脅 到後續海岸公路路基之穩定性。

4.2.4 海岸公路穩定性整體研析

綜合公路溢淹分析及海岸結構物安定性分析結果,波浪溯升高程 大於路面高程之越波區域通常對應較大的護岸前坡塊石最小重量及 堤趾基礎保護工最小粒徑,而這些公路溢淹熱點通常對應護岸結構前 波高較大位置,說明在台9線公路下方地質狀況不佳,土壤抗剪能力 不足情形下,若遭遇較大的入射波高整體狀況較不安定,若波浪拍擊 強度大於護岸前坡塊石防護能力,則護岸前坡塊石容易剝落或傾倒, 這呼應現場護岸前坡的破壞型態及災難類型。

4.3 公路溢淹災害特性分析評估

本章節主要針對台九線海岸公路「公路溢淹」災害特性分析結果 進行評估。首先,會針對特性分析結果與往昔資料進行比對分析,探 討本計畫評估「公路溢淹」致災潛勢區域之合理性。之後,則再針對 分析結果進一步研提較嚴重之溢淹段,以利未來因應策略之參酌。

除本計畫第二章所蒐集之致災區相關資料外,本團隊亦與第三區 養護工程處(以下簡稱養工處)取得往昔大武段曾經公路溢淹致災路段 資料,彙整上述資料與本計畫災害特性分析結果進行比對驗證,其結 果參見表 4-1。其中,由本計畫災害分析結果與往昔資料比對可知, 南興至大武路段中,大武漁港以南為公路溢淹熱點,其中 440K+000 ~ 441K+000 為較顯著之路段;加津林至多良段中,以大竹溪以南 424K+500 周圍區域為致災熱區;香蘭至三和段中,以三和海濱公園 周圍區域(396K+000~396K+500)為公路溢淹致災熱區。

4-28

路段	往昔致災資料	說明				
南興至大武路段	440K+080~440K+800	此為養工處提供資 料。 此路段為往昔易公路 溢淹致災路段,而於 本計畫災害分析結果 中,440K+000~ 441K+000亦有公路溢 淹潛勢路段存在。				
南興至大武路段	440K+900 ~ 441K+360	此為養工處提供資料。 此路段為往昔易公路 溢淹致災路段,而於 本計畫災害分析結果 中,440K+500~ 441K+000亦有公路溢 淹潛勢路段存在。				
加津林至多良路段	③ 3 R 段 ④ 5 R 段 ● 5 R 段 ● 5 R 段 ● 5 R P ● 5 R P ● 5 R P ● 5 R ● 5 R ● 5 R ● 5 R ● 5 R ● 5 R ● 5 R	本計畫災害分析結果 中, 424K+000 ~ 424K+500 (大竹)、 421K+500~422k+000 亦有公路溢淹潛勢路 段存在。然,加津林與 多良路段雖亦有溯升 高度接近公路高程現 象,惟未為潛勢路段。				

表 4-1 公路溢淹災害特性分析比對與驗證

第五章 沿岸流與沿岸中長期地形變遷特性分析

為瞭解臺東海岸公路沿岸中長期地形變遷特性,進行近岸水動力 及地形變遷數值模擬,針對易致災區段進行兩種不同情境模擬分析:1. 外海入射代表性波浪;2.夏、冬季代表性波浪條件。並藉由代表波浪 條件模擬成果,針對中長期地形變遷進行分析,其成果概述如下:

5.1 夏、冬季及全年度代表性波浪條件及輸砂條件

1.代表性波浪條件

要描述漂沙特性與地形變遷現象前,需先決定外海入射波浪之特性。外海入射波波高(H₁)與週期(T₁)之選定乃採用椹木(1982)建議之方式,以下式求得。

$$\sum (T_i \times P_i) = T_i \times \sum P_i \tag{5-1}$$

$$\sum (H_i^2 \times Cg_i \times P_i) = H_i^2 \times Cg_i \times \sum P_i$$
(5-2)

式中*Cg*為群波波速,*P*為波浪所佔之比例,*H與T分別為波浪之波*高與週期,而下標*i*表示單一波浪之特性,下標*t*則為所求之代表波 浪特性。

本計畫研究中長期地形變遷,首先分析計畫區長期代表性波 浪趨勢。外海波浪條件則蒐集中央氣象局臺東外海觀測浮標之長 期波浪觀測資料,資料結果如圖 5.1,資料長度為 2010/09~2018/03。 進一步將夏季以及冬季分開統計,其波浪特性玫瑰圖如圖 5.2,根 據季節性示性波高、週期之累積機率分布可推估本計畫區內在夏 季季風期間表性波高=1.43 m 代表性週期=5.81 s 主要波向 ESE 群 波波速=4.81 m/s。冬季代表性波高=1.74 m 代表性週期=6.44 s 主要 波向 E 群波波速=5.55 m/s;全年度代表性波高=1.62 m 代表性週期 =6.12 s 主要波向 E 群波波速=5.16 m/s。

圖 5.1 臺東浮漂波浪資料時序列

圖 5.2 臺東浮漂夏、冬季波浪資料統計結果

2.河川輸砂計算條件

本計畫河川懸浮質給定採用「東海岸(太麻里段)環境營造改善計畫(2/2)」調查結果之河口懸浮值粒徑,如表 5-1。另,河川流量 以及輸砂量計算採用太麻里溪平均年輸砂量約為 153 萬立方公尺/ 年,換算成平均輸砂率(120kg/s),對應 2.4.2 節太麻里溪河川流量 及輸砂率公式,經計算結果約採用整數為 20(cms),由於計畫區河 川特性差異不大,故於各河川輸砂模擬均採用此數據。

表 5-1 太麻里溪河口底質粒徑大小組成成分表

	X	Y	D10	D16	D25	D30	D50	D60	D75	D84	D90	Dm	Cu	grvl(%)	sand(%)	silt(%)
TMRN-L	250840	2498731	1.70	2.42	3.05	3.47	5.75	7.34	10.44	12.63	16.36	7.73	4.32	95.74	4.26	0.00

單位:mm

5.2 地形變遷趨勢模擬結果

地形變遷計算海象條件是利用上述分析之代表性波浪條件計 算;流場則採用中域模式計算的水位及流速結果;海岸底質粒徑之 中質粒徑為10mm,海岸漂沙模擬利用Van Rijn漂沙理論,並配 合地形變遷加速因子計算中長期地形變遷情況。計算結果展示如 圖5.3~圖5.20,圖中結果以全年度代表性波浪計算結果描述之,以 瞭解計畫區全年度地形變化之定性趨勢。再將夏、冬季及全年度條 件之地形變遷計算結果,分別以「南興至大武段」、「加津林至多 良段」及「香蘭至三和段」分述如后所示:

1.南興至大武段

由圖 5.3~圖 5.5 夏季期間平均流場計算結果顯示,南興至大武 段,夏季普遍沿岸流往北,位於 435K+500 河口處位置則出現往南 之沿岸流,研判此流場方向應受地形影響導致。於冬季波浪條件下, 大武地區沿岸流場,不分區段呈現全面往南之趨勢,且其平均流速 明顯較強。由全年平均趨勢觀之,整體沿岸流以往南為主。

由地形侵淤趨勢模擬分析結果可見圖 5.6~圖 5.8,夏季河川輸 砂集中至河口兩側及水深 20 m 位置,漂沙影響最北過 433k+000 計算邊界位置,南向漂沙可至大武漁港,惟砂源較無法到達南興路 段區域,整體地形變遷結果顯示夏季代表性條件其海岸侵蝕現象 較不明顯。由冬季侵淤結果顯示,河川輸砂以往南為主,往南可補 充至南興路段海岸,整體海岸零米線至五米水深處位置,有較明顯

5-3

之侵蝕帶。進一步由全年度結果觀之,河川輸砂包含大武漁港在內 由南至北皆有分布,南興路段外側雖有漂沙補注,其漂沙大部分沉 積位置可能較深,其海岸線分布仍呈現略為侵蝕之趨勢。

2.加津林至多良段

由圖 5.9~圖 5.11 夏季期間平均流場計算結果顯示,加津林至 多良段,夏季普遍沿岸流往北;冬季期間,整段海岸呈現全面往南 之趨勢,且其平均流速明顯較強。冬季往南沿岸流較強,其原因和 冬季波浪條件所引致近岸流流向與外部海流方向一致影響有關。 由全年平均趨勢觀之,整體沿岸流以往南為主,整體沿岸流趨勢類 似於冬季趨勢。

由圖 5.12~圖 5.14 地形侵淤趨勢模擬分析結果可知,夏季河川 輸砂集中至河口兩側以及水深 20 米處位置,漂沙往北影響至 420k+000 附近,整體地形變遷結果顯示夏季代表性條件其海岸侵 蝕現象較不明顯。冬季時侵淤結果顯示,河川輸砂淤積以往南為主, 於河口北側海岸零米線至五米水深處位置,有較明顯之侵蝕帶。進 一步由全年度結果觀之,河川輸砂由南至北皆有分布,其大竹溪以 北海岸線有較顯著侵蝕趨勢;大竹溪以南接近河口處亦有侵蝕現 象發生。

3.香蘭至三和段

由圖 5.15~圖 5.17 夏季期間平均流場計算結果顯示,香蘭至三 和段,夏季於太麻里溪口近岸流有往北趨勢,與此區外側海流往南 流向相反,此現象至 399k+000 位置後不明顯,該路段其餘地點於 夏季期間仍然出現往南之趨勢,研判可能為外圍海潮流影響所致。 冬季期間,不分區段呈現全面往南之趨勢,冬季往南沿岸流較強, 其原因與冬季波浪條件所引致沿岸流場流向與外部海流流向一致 影響有關。由全年平均趨勢觀之,整體沿岸流以往南為主。

由圖 5.18~圖 5.20 地形侵淤趨勢模擬分析結果可見,夏季河川 輸砂集中至河口南北兩岸 400k+000~409k+000,整體地形變遷結果

5-4

顯示,夏季代表性條件其海岸侵蝕現象較不明顯;冬季時侵淤結果 顯示,河川輸砂往南淤積,於河口北側海岸零米線至五米水深處位 置,有較明顯之侵蝕帶,侵蝕趨勢從太麻里溪河口北側至三和路段。 進一步由全年度結果可知,河川輸砂以南向輸送為主,整體而言, 太麻里溪以南呈現有淤積趨勢;以北則以侵蝕趨勢為主。

圖 5.3 夏季期間平均流場(南興至大武段)

圖 5.4 冬季期間平均流場(南興至大武段)

圖 5.5 全年度平均流場(南興至大武段)

圖 5.6 夏季地形變化結果(南興至大武段)

圖 5.7 冬季地形變化結果(南興至大武段)

圖 5.8 全年度地形變化結果(南興至大武段)

圖 5.9 夏季期間平均流場(加津林至多良段)

圖 5.10 冬季期間平均流場(加津林至多良段)

圖 5.11 全年度平均流場(加津林至多良段)

圖 5.12 夏季地形變化結果(加津林至多良段)

圖 5.13 冬季地形變化結果(加津林至多良段)

圖 5.14 全年度地形變化結果(加津林至多良段)

圖 5.15 夏季期間平均流場(香蘭至三和段)

圖 5.16 冬季期間平均流場(香蘭至三和段)

圖 5.17 全年度平均流場(香蘭至三和段)

圖 5.18 夏季地形變化結果(香蘭至三和段)

圖 5.19 冬季地形變化結果(香蘭至三和段)

圖 5.20 全年度地形變化結果(香蘭至三和段)

5.3 海岸侵淤災害分析

進一步將夏、冬季以及全年度條件之地形變遷計算結果, 撷取 海岸零米線之變化分析, 茲分別以「南興至大武段」、「加津林至 多良段」及「香蘭至三和段」此三段近域範圍於冬夏季以及全年度 長期條件下之地形變化趨勢計算結果進行探討與說明, 相關分述 如后所示: 1. 南興至大武段(圖 5.21)

由計算結果顯示南興至大武段,位於大武漁港以北由 435K+000~438K+000,由於此區有河條河川之關係,這段海岸有明 顯之淤積現象,大武漁港南側至南興段長期結果屬於侵蝕趨勢,但 皆未達災害潛勢的標準,此區較明顯之災害為淤積災害,位在 438K+000 大武漁港位置,由最左側海岸線顯示,此區剛好位於一 個凹槽海岸地形,由前章節研究結果顯示,於大波浪時南北兩側流 場皆會往此地帶聚集,這可能是造成此區域長期容易淤積之主因。

2. 加津林至多良段(圖 5.22)

此區域普遍而言屬於略為侵蝕之趨勢,河口除外,由於海岸線 屬於直線型,故其季節性變化差異不大,長期地形變遷分析結果顯 示於418k+000、420K+000及428K+000~428K+500此三處位置, 略為呈現中侵蝕潛勢,侵蝕情況尚不嚴重,建議定期注意其變化。

3. 香蘭至三和段(圖 5.23)

此段海岸多數屬於侵蝕趨勢,除太麻里溪可口南側位置 404K+000~407K+000 為淤積,河口處其季節性侵淤差異較大,其 中三和海岸 397K+500 位置處已達中潛勢侵蝕標準,且其距離公路 較近,應密切注意其地形變化。

圖 5.21 南興至大武段段海岸線侵淤趨勢變化成果

圖 5.22 加津林至多良段侵淤趨勢變化成果

圖 5.23 香蘭至三和段侵淤趨勢變化成果

5.4 海岸侵淤特性分析評估

本章節主要針對台九線海岸公路「侵淤災害」災害特性分析結果 進行評估。首先,針對海岸侵淤特性分析結果與往昔資料進行比對分 析,探討本計畫評估「侵淤災害」潛勢區域之合理性。之後,則再針 對分析結果進一步研提較嚴重之侵淤段,以利未來因應策略之參酌。

本團隊蒐集往昔相關調查成果報告與本計畫災害特性分析結果 進行比對驗證,其結果參見表 5-2。由本計畫災害分析結果與往昔資 料比對可知,南興至大武路段中於高程+3m~水深-3m間之沿岸土方, 呈現侵蝕趨勢,大武漁港周圍呈現淤積趨勢。其中,大武漁港冬季淤 積量為夏季之六倍,於大武漁港南側南興路段海域長期呈現侵蝕趨勢; 加津林至多良段以往較缺乏調查資料;而太麻里區大致呈現夏淤冬侵 之型態,且夏季常因颱風來襲,溪口外測之地形容易受到太麻里溪河 川大量輸砂的影響,而產生大範圍淤積的分布情形,至於香蘭段長期 呈現侵蝕趨勢,其結論與本研究模擬之長期趨勢一致。此外,透過本 計畫所蒐集之衛星影像資料(參見 2.6 節)進行灘線分析,並與侵淤災 害特性分析結果進行比對。此分析需運用「邊緣偵測法」擷取各影像 之灘線,並透過不同時間點之灘線進行平均位移計算,以求得各影像 期間灘線變化距離(退縮或外推)。各灘線分析結果均需再透過各影像 的潮時所推估之潮位,配合坡度地形進行潮位修正,以提高灘線分析 之合理性,其結果如表 5-3 所示。目前侵淤災害特性分析之潛勢區域 與灘線分析結果情況大致符合,因此可知目前災害特性分析結果具有 參考性。

由侵淤災害分析結果與往昔資料比對可知,南興至大武路段中, 大武漁港為淤積災害熱點;加津林至多良段中,以418K+000 周圍區 域為侵蝕災害較顯著之熱區,惟較缺乏現場調查資料與之對應,仍為 需注意之區域;香蘭至三和段中,以397K+500 為海岸侵蝕致災熱區。

表 5-2 海岸侵淤特性分析比對與驗證
		台東海岸(尚武段)監測 調查計畫資料。
大武漁港淤	AJG 32 2009	大武漁港往年淤積情 形,顯示大武漁港港池 與港口區主要淤砂期 間係在冬季波浪作用 期間,且冬季之淤砂量 約為夏季的6倍。
積 情 形	AUG 30 2009	本計畫特性分析結果 可知,大武漁港周圍亦 呈現冬季淤積大於夏 季之情況。

表 5-3 衛星影像灘線分析比對

第六章 結論與建議

本計畫主要為針對「台9線」海岸公路溢淹及沿岸地形變遷特災 害性進行探討,除針對該區域相關背景資料蒐集外,亦須建置適合模 擬台東海岸水動力與地形變遷之數值模式,並進行台九線公路溢淹和 沿岸中長期地形變遷特性探討,以瞭解拓寬之公路(如台9線)可能造 成災害影響。依據相關背景資料蒐集,分析台九線往昔易致災路段, 並透過現場勘查作業,瞭解目前台九線公路現況及災害分析之重要區 域。本計畫主要運用「數值模擬」及「災害特性分析」方式進行評估, 數值模式方面,運用遠域模式、中域模式及近域模式三種不同模擬方 式,進行水動力與地形變遷模擬,亦有透過相關觀測資料進行波浪、 潮位及流速等相關驗證,證明目前數值模式模擬計算之可靠性,地形 變遷模式則透過與觀測資料進行比對,調校相關參數使其模擬地形變 遷趨勢較具合理性;災害特性分析方面,則採用數值模擬結果,進行 加值分析,藉以劃定各災害類型(公路溢淹、侵蝕災害及淤積災害)於 台九線海岸之災害潛勢區域分布情況,此可做為未來施工或防災作業 之參酌。

6.1 結論

- 本計畫蒐集往昔台九線海岸區域相關報告,彙整其環境背景資料 與往昔曾致災區域位置及相關災情狀況。另透過現場勘查方式瞭 解易致災區域之現況,並劃分後續需評估之致災區域與範圍。
- 2. 蒐集計畫區往昔衛星影像資料,並進行分析探討。由衛星分析結果 可瞭解台九線海岸長期變化情況,亦可探討因海岸結構物(防波堤、 突堤及離岸堤等)設置影響,使其灘線與海岸環境變化之行為。另 透過影像處理方式,可瞭解台九線沿岸漂沙季節性變化趨勢,俾利 未來策略擬訂之參考。

- 3. 本計畫以台九線海岸為模擬對象,建置適合數值模擬之模式,包含 遠域模式、中域模式及近域模式。透過各模式模擬與相關資料分析, 則可以較完善且邏輯的方式,探討台九線海岸災害特性。相關數模 模式亦有透過本計畫所蒐集之觀測資料,進行完整的驗證與調校, 並確認目前模式所採用網格、邊界條件及數值地形等資料,能夠可 靠的模擬台九線海岸相關物理問題。
- 4. 針對各情境模擬結果進行災害特性分析,藉以瞭解台九線海岸現況所會面臨之災害問題。本計畫以「公路溢淹」、「侵蝕災害」及「淤積災害」三個災害類型,來進行海岸災害特性分析,並標記可能致災之潛勢路段。
- 5. 本計畫於「公路溢淹」災害特性分析中,除針對溯升與越波量對公路影響進行評估外,亦有進行公路安全性檢討,並研析台九線海岸公路總體穩定性。依目前分析成果可知,台九線 440K+000~441K+000、424K+500 周圍及 396K+000~396K+500 均為公路溢淹災害潛勢較為顯著之路段。
- 6. 本計畫於「侵蝕災害」與「淤積災害」災害特性分析中,除針對兩災害分別對公路侵蝕威脅與公共設施營運影響進行評估外,亦有提供各災害中長期趨勢變化。依目前分析成果可知,大武漁港為淤積災害潛勢熱點,418K+000 周圍區域及 397K+500 為侵蝕災害潛勢之熱點。

6.2 建議

 本計畫中「數值模擬」是非常重要的環節,災害特性分析所使用之 資料均來自數模模擬成果。然針對台九線海岸模擬上最為欠缺的 部分,概為水深地形資料,尤其位於近岸處的地形資料更難以取得, 本計畫僅能透過各研究報告或調查報告,配合現有的數位地形,以 較為合理的方式模擬計算計畫區域各物理問題。若有更完整之地 形資料,對於未來數值模擬準確度和工程評估之嚴謹度,乃至防災 預報之準確度必能有所強化。

6-2

- 2. 由於台東海岸線較長,以「面」的方式評估相關災害特性分析時, 會撷取較大的範圍來進行評估,以增加評估整體性。因此,為顧及 模擬計算效率,於近岸區域網格使用上會有所侷限。本計畫評估成 果可以面狀方式瞭解台九線海岸整體災害特性,惟若需進行局部 區評估與改善策略研擬時,則需透過更細緻的網格、解析度更高的 地形資料及建物資料來進行模擬,才能增加局部區域改善策略擬 訂之可靠性。
- 由本計畫衛星影像分析結果顯著瞭解,台九線海岸漂沙季節性變 化趨勢。然若能獲得品質高之衛星影像及現場同步量測資料,應可 透過穩定的衛星圖資,解析大範圍漂沙變化趨勢及濃度變化,其對 工程評估與改善方案策略有相當大的助益。

參考文獻

- Booij, N., L. H. Holthuijsen and R. C. Ris, "A The SWAN Wave Model for Shallow water," *Proceedings of 24 International Conference on Coastal Engineering*, Orlando, USA, Vol. 1, pp. 668-676 (1996)
- Booij N., L. H. Holthuijsen and IJ. G. Haagama, "Comparison the Second-Generation HISWA Wave Model with the Third-Generation SWAN Wave Model," 5th International Workshop on Wave Hindcasting and Forecasting, Jan. 27-30, Melbourne, Florida, pp. 215-212 (1998).
- 3. Camenen, B. and Larson, M., "A general formula for noncohesive bed load sediment transport," *Estuarine, Coastal, and Shelf Science*, 63, 249-260 (2005).
- Camenen, B. and Larson, M., "Phase-lag effects in sheet flow transport," *Coastal Engineering*, 56, 531-542 (2006).
- Holthuijsen, L. H., N. Booij, R. C. Ris, J. H., Andorka Gal and I. C. M. de Jong, "A Verification of the Third-Generation Wave Model "SWAN" along the Southern North Sea Coast," *Proceedings 3rd international Symposium on Ocean Wave Measurement and Analysis*, WAVES, 97, ASCE, pp. 49-63 (1997).
- 6. Luettich, R.A., Jr., J.J. Westerink, and N.W. Scheffner, "ADCIRC: an advanced three-dimensional circulation model for shelves coasts and estuaries, report 1: theory and methodology of ADCIRC-2DDI and ADCIRC-3DL," *Dredging Research Program Technical Report DRP-92-6, U.S. Army Engineers Waterways Experiment Station, Vicksburg, MS*, 137p (1992).
- Smith, J. M., "Breaking in a spectral wave model," Proceedings 4th International Symposium of Ocean Wave Measurement and Analysis, Waves 01, ASCE, 1022-1031 (2001).
- Van Rijn, L.C., "The effect of sediment composition on cross-shore bed profiles," *Proc. 26th ICCE*. Copenhagen, Denmark (1998).
- Van der Meer, J.W. and Stam, C.J.M., "Wave run-up on smooth and rock slopes of coastal structures." ASCE, *Journal of Waterway*, *Port, Coastal and Ocean Engineering*, 188(5), 534-550 (1992).

- Watanabe, A., "3-dimensional numerical model of beach evolution." *Proc. Coastal Sediments* '87, ASCE, 802-817 (1987).
- Westerink, J.J. and R.A. Luettich, "Tide and storm surge predictions in the Gulf of Mexico using model ADCIRC-2D," *Report to the US Army Engineer Waterways Experiment Station, July*, (1991).
- 12. 椹木亨,漂沙と海岸侵蝕,(1982)。
- 13. Coastal Engineering Manual (CEM), (2002).
- 14. Coastal Engineering Manual (CEM), (2005).
- 15. Coastal Engineering Manual (CEM), (2006).
- 16. Douglass and Krolak, "Hydraulic Engineering Circular No. 25," (2008).
- 17. Brown and Clyde, "HEC-11 Design of Riprap Revetment," (1989).
- 18. 謝世圳、林呈、張禎罐、張澤龍、李鳴峻、賴文俊、蔡清標(2000)「臺東知本海岸與美和海岸變遷之研究」,第二十二屆海洋工程研討會論文集,第410-416頁。
- 19. 曹宴瑄、黃偉柏、張東宸、詹智為(2011)「臺東太麻里海洋及河口營力對海岸 地形變遷之數值模擬研究」,第三十三屆海洋工程研討會論文集,第 399-404 頁。
- 20. 溫志中、張君名、莊文傑(2012)「潮流作用下臺灣漁港淤砂研究」,第三十四 屆海洋工程研討會論文集,第375-380頁。
- 21. 黃學美、朱至誠(2013)「台9線海岸公路防浪保護工程之探討」,第三十五屆海洋工程研討會論文集,第275-280頁。
- 谷如娟、張欽森、劉勁成、朱志誠、何良勝,「臺北港波浪條件推算及設計 波高基準之探討」,交通部運輸研究所(2006)。
- 經濟部水利署第八河川局,「臺東海岸(香蘭段)監測防護計畫(2-2)」,經濟 部水利署(2007)。
- 24. 成大水利海洋研究發展文教基金會,「海岸防護設施設計準則(草案)海堤篇」, 經濟部水利署水利規劃試驗所(2010)。

- 25. 成大水利海洋研究發展文教基金會,「海岸防護及環境復育規劃參考手冊」, 經濟部水利署水利規劃試驗所(2010)。
- 26. 經濟部水利署第八河川局,「台東海岸(太麻里段)環境營造改善計畫」,經濟部水利署(2010)。
- 27. 經濟部水利署第八河川局,「臺東海岸(尚武段)監測調查計畫(2/2)」,經濟部水利署(2010)。
- 經濟部水利署第八河川局,「臺東海岸(太麻里段)環境營造改善計畫(2/2)」,
 經濟部水利署(2012)。
- 29. 邱永芳、蔡金吉,「消能式結構物應用於臺灣港灣設施保全之研究(4-4)」, 交通部運輸研究所(2013)。
- 30. 陳冠宇、陳陽益、邱永芳、蘇青和、單誠基、李俊穎,「應用地理資訊系統 建置臺灣主要商港溢淹災害潛勢圖之研究(2/2)」,港灣研究中心(2016)。
- 31. 經濟部水利署第八河川局,「臺東海岸防護計畫」,經濟部水利署(2017)。

附錄一 期中審查意見回覆表

附錄一 期中審查意見回覆表

「臺東海岸公路溢淹及沿岸地形變遷特性研究」

期中審查意見回覆表

壹、時間:中華民國107年7月13日(星期五)上午10時

貳、地點:港研中心2樓簡報室

參、主持人:蘇科長青和

記錄:陳鈞彦

肆、出(列)席單位及人員:(略)

伍、主席致詞:(略)

陸、合作單位簡報:(略)

柒、審查委員意見與回覆表:

審查意見	意見回覆說明
一、陳委員文俊(書面意見	1)
(一)內容符合預定工作 進度,亦達期中成 果需求,給予肯定。	感謝委員肯定。
(二)第二章基本資料蒐 集內容,建議能補充 至最新年期資料,期 使內容更臻完整。	感謝委員意見,將持續蒐集計畫區資料(較新年期的 技術報告和調查報告等),並補充相關內容。
(三)本年度計畫是否僅 考慮執行大武漁港 附近段海岸公路之 研究?概第二章之資 料似乎大多僅以尚 武海岸作為蒐集對 象。	感謝委員意見。 本計畫區範圍為南起安朔路段北至臺東市,約含括 臺東市以南台九線公路區段,參見圖1.2-1。目前除蒐 集尚武段海岸資料外,亦有針對易致災區域(南興路 段、大武漁港、多良路段、香蘭路段及三和與美和等 海岸區域)進行相關資料探討,後續將會補充各區域 基本資料說明,以利提升完整性。
(四)第三章數值評估,建	感謝委員意見。

議能加入有關地形 變遷模式之說明,諸 如河口輸砂、海岸漂 沙之計算方法、地形 變遷之方程式與邊 界條件等,有利了 解。	將於期末報告中,補充地形變遷模式相關說明。
 (五)數值模式演算之成 果圖,如第三章之圖 3-3.13~14、圖 3- 4.3~5、圖 4-3.1 及 圖 5-3.1 等,建議可 針對近岸部分放大,以利較易清楚辨識 模擬結果。 	感謝委員意見。 本計畫模擬範圍包含遠域、中域與近域,圖3-4.3~圖 3-4.5為中域範圍,主要為瞭解計畫區(台九線公路 海岸)整體設計條件波高分布、公路高程及河川翰 砂情況,以利做為近域範圍劃分參酌;圖3-3.13、圖 3-3.14、圖4-3.1及圖5-3.1則為近域模擬範圍,後續會 針對近岸區域局部分放大,俾利清楚辨識。
 (六)第四章海岸防護能 力檢討中之安定性 評估與溯升與越波 量評估雖於期末會 呈現完整結果,建議 可先將亦應用於本 計畫之相關評估方 法與公式可先說明。 	感謝委員意見。 海岸防護能力檢討中之安定性評估方法主要參考水 利規劃試驗所報告,而溯升與越波量評估則主要是 參考美國陸軍工程兵團海岸工程手冊(CEM, 2005)進 行越波量評估,後續將於期末報告補充相關方法與 公式說明。
(七)因計畫會探討安定 性與越波量,故建議 應於資料蒐集內宜 補入臨海側公路邊 坡型式、消波塊或塊 石重量、公路護岸高 程或其他與未來評 估分析有關之資料。	感謝委員意見。 相關資料將視資料蒐集情形納入於期末報告說明。
二、蔡委員清標 (一)期中報生內容 購完,	成谢禾昌告定。
(一)朔 平 報 古 內 谷 宣 届 , 具 執 行 成 效 , 予 以 肯	巛 谢 女 貝 月 人 °

定。	
 (二)建議 2-1 増列暴潮 水位、2-2 増列颱風 波浪資料。 	感謝委員意見,遵照辦理,並於期末報告修改與補 充。
 (三)本計畫於今年4月 與6月共進行現勘2 次,予以肯定。若能 於颱風期後再予現 勘1次以上,恃更符 本計畫意旨。 	感謝委員肯定。 本計畫工作項目中,並無現地勘查之項目。然為更瞭 解台九線公路現況環境,故於計畫執行期程中額外 安排現地勘查行程,並蒐集現況環境資料,以供本計 畫易致災區範圍規劃與「近域」模擬範圍劃分之參 酌。於颱風期後進行現勘,確可更深入瞭解不同環境 條件下之現地情況,惟期先以完成本計畫主軸工作 為目標,並待相關成果完整分析後,再斟酌是否有再 進行現地勘查作業之必要性。
 (四)式(3-6) (3-7)中,h、 m、s 符號應定義, 而式 (3-29)(3-30) 有 誤。 	感謝委員意見,將於期末報告修改。
(五)遠、中域風浪模式與 近岸波浪模式如何 銜接,建議有所說 明。	感謝委員意見,將於期末報告補充說明各模式銜接 情況。
 (六)圖 3-3.5 波高模擬之 峰值偏差較大,建議 可與檢討或改進。而 圖 3-3.3 之 23 至 24 日及 28 日前後之模 擬值較不合理。 	感謝委員意見。 圖3-3.5波高模擬峰值偏高現象,概因本計畫所使用 之模擬風場(RVM),能量衰減影響較實際風場小,導 致模擬波高峰值會有偏高現象發生。然,由於天秤颱 風路徑較為複雜,使其模擬結果偏差略高,後續將改 以規模較大的影響較大的颱風事件(例如:莫蘭蒂)做 為驗證對象,以利加強驗證之可信度。 於圖3-3.3中,模擬水位是取數值暴潮偏差成果及實 測水位訊號之合,而蘇澳港在23至24日及28日前後 水位訊號均異常,而重新取樣後不慎內插為斜直線 訊號,該錯誤將於期末報告修正。
(七)圖 3-3.2 地形變遷模	感謝委員意見,後續將於期末報告補充相關資訊。

附 1-3

擬之波浪條件,建議 列表並說明之。圖 3- 3.13 色階之單位應 標示。	
(八)表 3-4.1 係本計畫所 推算或引用其他資 料來源?	感謝委員意見。 表3-4.1之颱風事件均為本團隊模擬及分析結果。往 昔本團隊均有針對遠域範圍進行相關模擬、調校與 驗證(臺灣周圍海域),然並未針對臺東海域輸出設計 條件資料(多良村外海水深約1038m處),因此本計畫 針對1989年~2016年之颱風事件重新輸出設計條件 資料,並重新模擬分析2017年颱風事件,以更新頻率 分析所須之背景資料。
 (九)圖 3-4.3 之 50 年波場計算結果,應標示入射波向,而紅色向量是否只波向或其他意義?近岸波浪分布可予局部放大以利判讀。圖 3-4.4亦不易判讀,可予改善,圖 5-3.1 亦同。 	感謝委員指導,紅色向量則代表波向,此部分會於期 末報告加強說明。另,圖3-4.4與圖5-3.1於近岸部分 會於期末報告進行修改,局部放大部分區域,以利後 續判讀。
(十)波浪溯升及越波量, 建議可引歐盟公式 或其他可靠文獻。	感謝委員意見。 本計畫目前是採用美國陸軍工程兵團海岸工程手冊 (CEM, 2005)進行波浪溯升與越波量估算,可蒐集歐 盟相關公式進行探討。
(十一)應列參考文獻。	感謝委員指正,將於期末報告補充。
三、蔡委員政翰	
 (一)圖 3-3.3 之水位圖在 23-24 日與 27-28 日 間實測資料有缺值, 但模擬的結果看來 幾乎像缺值區前後 連線而已,此期間看 	感謝委員意見。 於圖3-3.3中,模擬水位是取數值暴潮偏差成果及實 測水位訊號之合,而蘇澳港在23至24日及28日前後 水位訊號均異常,而重新取樣後不慎內插為斜直線 訊號,該錯誤將於期末報告修正。

附 1-4

 (二)圖 3-3.13 之圖說與 圖 3-3.12 完全一樣, 另圖 右之色條沒標 題與單位。 	感謝委員指正。 圖3-3.13之圖說為誤植,其與色條之標題與單位將於 期末報告一併修正。
(三)圖 4-3.1 圖右色條無 標題與單位,還有圖 內標出「波揚較高之 路段」,請說明多大 算較高。	感謝委員指正。 圖 4-3.1之色條圖標與單位將於期末報告補充修正。 依據初步模擬結果顯示水位抬升於三和路段有較高 之趨勢,且水位可抬升至較高之高度(10m)。此外, 經檢視此區域近岸地形DEM資料有缺,經內插後發 現地形呈現過於平緩,於期末報告時,將重新檢視此 處地形後,並重新計算。
 (四)5-1 頁 5.2 節之夏 季季風期間代表性 波高為 0.54m,週期 為 2.2 秒,這是否 應該為 5.2 秒(圖 5-2.1),另請說明如 何從累積機率分布 決定代表性波高與 週期。 	感謝委員指正。 夏季季風期間示性波高為 0.54m時,週期確為 5.2 秒,此為誤植,將於期末報告修改。另外,由累積機 率分布結果可知,計畫區域內季節性波高分布之特 性。其中,所用來分析的觀測資料波高型式為示性波 高,計算累積機率為30%時,為波浪觀測期間,人們 較常感受之波高(H _{1/3}),此為波浪狀態之描述,與模 式計算所需使用之代表性波浪不同。
(五)圖 5-3.1 的圖右色 條無標題與單位。	感謝委員指正,將於期末報告修正。
(六)報告內之波浪週期 都寫為示性週期,通 常很少用示性週期, 較常用平均週期 (Tm02或Tz),模式 算出的頻譜可以計 算平均週期,但不能 計算出示性週期。	感謝委員指正。 本計畫用來分析的觀測資料中,波高是採用「Hs」此 為示性波高;週期為「Tp」為主頻週期。因此,報告 中分析觀測資料所得之波高型式為「示性波高」,週 期則應為示性波高所對應之「主頻週期」,並非「示 性週期」。此外,本計畫數值模式所須輸入條件為示 性波高(Hs)及主頻週期(Tp),藉以做為JONSWAP波 譜計算條件,並計算出相位平均後之Hs及Tp。

(一)海岸公路溢淹建議 需增列分析斷面以 模擬分析因波浪溯 升所產生之公路溢 淹,使用之方式請詳 述。	感謝委員意見。 將針對近域區域, 擷取部分斷面水位分布結果分析 其合理性, 並於期末報告補充說明。	
 (二)建議增列各海岸段 之流場分布(季節特 性、颱風事件於不同 海岸段之影響)。 	感謝委員意見。 於期末報告中,將配合地形變遷結果,補充流場分布 模擬結果,以利地形變遷分布探討,並針對季節特性 影響進行分析討論。	
(三)分析重點區域建議 於文章中加以說明, 以釐清是否需包含 結構物等效應(尺度 是否需加密細部探 討)。	感謝委員意見。 本計畫重點區域為台九線易致災路段區域,目前依 據往昔研究、現勘結果與本計畫中域模擬結果,劃分 3區塊近域範圍進行易致災區探討,其中部分重點區 域(例如:大武漁港)將會建置於模擬區域內,以利探 討公路溢淹與地形變遷之情況。	
 (四)東部海岸軟波應甚 陡,格網以 25mX25m 是否能 評估近岸流場?需 加以評估。 	感謝委員意見。 本團隊將再檢視網格品質是否足以評估計畫趨近岸 流場,俾利加強後續模擬結果之可靠性。	
(五)波揚計算建議以斷 面截取,以經驗公式 確認計算。	感謝委員意見。 將針對近域區域, 擷取部分斷面水位分布結果分析 其合理性。	
五、蔡委員立宏		
(一)文獻收及許多測站 資料,建議增加各測 站位置圖。	感謝委員意見,遵照辦理。	
(二)研究目標區是否有 水深地形及侵淤資 料。	本計畫外海30公尺水深以下地形是利用科技部臺灣 周圍200公尺資料,近岸水深地形則以內插方式所 得;侵淤資料大都蒐集往昔調查報告結果所得(例	

附 1-6

	如:「100年度臺東海岸(太麻里段)環境營造改善計畫」)。
(三)颱風波浪為造成短 期變遷及致災主要 波浪,未來是否納入 評估考量?	感謝委員意見。 將擇選較具代表性之颱風事件,進行短期變遷及致 災分析。
(四)圖形色階圖說及單 位請標示完整?	感謝委員指正。 將於期末報告修正。
(五)圖 3-3.13 中應為侵淤圖,請修正。	感謝委員意見,遵照辦理。
六、蘇委員青和	
(一)引用數值分析成果, 加強分析臺東海岸 其可能產生之中長 期地形變遷特性成 果。	感謝委員意見。 後續將以「岸線距離」與「地形變遷現象」(淤積量 與侵蝕量),進行量化分析,俾利加強瞭解各區域變 遷情況。
(二)建議引用數值分析 之成果,加強說明臺 東海岸公路容易致 災區段之海水溯上 與溢淹特性。	感謝委員意見。 後續將以「岸線距離」與「溢淹現象」(水位抬升高 度),進行量化分析,俾利加強瞭解各區域海水溯上 與溢淹特性情況。
(三)加強往昔測量資料 及衛星資料分析,以 發掘臺 9 線公路易 致災之區段之海岸 侵蝕或地形變遷特 性。	感謝委員意見。 後續將整理現有圖資及往昔量測資料後,補充購買 缺乏年份與區域之衛星影響資料,以利進一步探討 臺 9 線公路易致災之區段之海岸侵蝕或地形變遷 特性。
(四)報告撰寫內容請依 本所規定,期末報告 增加納入英文摘要。	感謝委員指正。 將於期末報告進行相關修正。
七、李委員俊穎	

(一)建議說明風場(風浪 模式)來源。	感謝委員意見。 將於期末報告補充說明。
(二)建議可以影響較大 颱風進行模式評估 說明(如莫蘭蒂颱 風)。	感謝委員意見。 將於補充更具代表性颱風事件(例如:莫蘭蒂颱風)之 模式評估驗證說明。
(三)建議釐清易致災之 災害類型進行討論。	感謝委員意見。 本計畫以「海岸侵蝕」、「海岸淤積」及「公路溢淹」 做為災害類型指標,以利後續針對易致災區進行探 討。

附錄二

期末審查意見回覆表

附錄二 期末審查意見回覆表

「臺東海岸公路溢淹及沿岸地形變遷特性研究」

期末審查意見回覆表

壹、時間:中華民國107年11月5日(星期一)下午1時30分

貳、地點:港研中心五樓簡報室

參、主持人:蘇科長青和

記錄:陳鈞彦

肆、出(列)席單位及人員:(略)

伍、主席致詞:(略)

陸、合作單位簡報:(略)

柒、審查委員意見與回覆表:

審查意見	意見回覆及處理情形說明
一、岳委員景雲	
 (一)理論與實務結合, 利用衛星影像判 讀漂沙影響範圍, 值得肯定,但注意 精度。 	感謝委員意見。 已於修正報告表2-13中,補充各衛星影像圖資之解析度 說明,以利瞭解各影像分析結果與影像解析度之相對 差異。例如:本計畫漂沙分析方面均採用SPOT衛星影 像(科技部無償下載圖資),其解析度約於10 m~20 m之 間,而本計畫漂沙分析範圍最小為2377215 m ² (約1100 m X 1100 m),因而目前影像精度應該合理分析漂沙範 圍資訊。
(二)香蘭-大鳥段與 「南興至大武 段」、「加津林至多 良段」、「香蘭至三 和段」相連結。	感謝委員意見。 本計畫主要探討台9線拓寬工程靠海路段,如圖1.1所 示。該路段起迄為「香蘭」至「大鳥」,而於本計畫中, 透過「背景資料蒐集」、「設計條件中域模擬結果」及「河 川輸砂趨勢模擬」將該區段劃分為「南興至大武段」、 「加津林至多良段」及「香蘭至三和段」做為致災區域 近域模擬範圍。詳細劃分資訊已於修正報告3.4.3節進 行說明。

(三)表 2-2、2-3 單位 cm→m。	感謝委員意見。 單位部分已修改統一為(m)。
(四)表 2-4 與表 2-5 建 議合併,波高為 H _{1/3} ,週期 T _p ?	感謝委員意見。 於修正報告中,已將表2-4與表2-5合併至表2-4,其中波 高為示性波高,週期為其對應之示性週期。
 (五)P2-30 圖 2.9 灘線 後退 34 公尺?約 增加4公尺,請大 略說明計算過程。 	感謝委員意見。 圖2.9中灘線量化數據,主要是透過衛星影像分析而來, 運用「邊緣偵測法」擷取各影像之灘線,並透過不同時 間點之灘線進行平均位移計算,以求得各影像期間灘 線變化距離(退縮或外推)。然,圖2.9所使用的衛星影像 為中央大學太遙中心所提供之免費介接圖資,因此並 無詳細的拍攝時間資訊,導致無法透過潮位修正來得 知較精確的灘線變化。為避免此分析結果產生誤解,因 而於修正報告中移除此部分內容,並於第五章中,透過 「無償圖資」針對致災區域來分析灘線變化,以強化灘 線探討之合理性。灘線分析相關內容請參閱修正報告 5.4節。
(六)建議將立即危險 路段標示出來並 加強說明。	感謝委員意見。 已於修正報告中新增4.3節與5.4節,分別針對公路溢淹 災害與地形變遷災害進行綜合討論,並於此兩章節與 第六章結論中,強化相關內容。
(七)基本資料蒐集建 議至最新年代,並 加強各章節相關 性。	感謝委員意見。 本計畫中相關背景資料(包含中央氣象局波浪、潮位及 颱風資料等)均已更新,並於各章節中加註引用資料蒐 集之來源,以利強化各章節相關性。
二、温委員志中	
(一)內容成果豐富,應 可符合單位需求。	感謝委員肯定。
(二)衛星影像分析長 期變遷概況,請加 註單位說明,及對 應潮時。	感謝委員意見。 已於修正報告中補充相關資訊,請參見表5-3衛星影像 灘線分析結果圖。

(三)P3-14 相關編排請 修正。	感謝委員指正,此部分已於修正報告中修正。		
(四)試說明平均水位 定義為何?	平均水位為波浪週期之平均水位,故看不到波高變化。		
(五)P5-1 代表波浪請 修正相關文字,及 加註單位說明。	感謝委員指正。 單位已補充,請參閱5.1節		
(六)是否潮波流及河 川水流綜合流場 圖,可說明不同季 節之特性。	感謝委員建議。 不同季節之特性相關內容已補充至修正報告,參閱5.2 節。		
 (七)冬夏季代表波浪 差異不明顯,建議 比對相關報告可 更有效掌握地形 之變遷(颱風異常 事件可否分開描 述?)。 	感謝委員建議。 於5.2節中已新增不同季節之特性之探討,其冬夏季沿 岸流與地形變遷仍存在差異性。另已參閱往昔研究進 行本計畫成果之比對及驗證,請參見5.4節。此外,本 計畫地形變遷以長時間作用為主,於附件三中則有針 對單一颱風事件(莫蘭蒂颱風)進行探討。		
三、張委員憲國	三、張委員憲國		
 (一)加強內文的用字 遣詞、敘述邏輯、 圖表呈現及編輯 以清楚表達研究 結果。 	感謝委員指正,於修正報告中已加強文字修飾及圖表 編排。		
(二)利用衛星影像來 分析漂沙範圍的 理論為何?灘線變 遷研究是否考慮 拍攝影像潮位的 修正問題?	 感謝委員意見。 1.本計畫漂沙範圍分析方式,已於修正報告圖2.10加強補充說明。 2.原報告中所提及灘線分析內容(如期末報告中圖2.9與圖2.10)所使用的衛星影像為中央大學太遙中心所提供之免費介接圖資,因此並無詳細的拍攝時間資訊,導致無法透過潮位修正來得知較精確的灘線變化。為避免此分析結果產生誤解,因而於修正報告中移除此部分內容,並於第五章中,透過「無償圖資」(可取得 		

	詳細拍攝時間)針對致災區域來分析灘線變化,並輔 助潮位修正方式,以強化灘線探討之合理性。灘線分 析相關內容請參閱修正報告5.4節。
(三)潮汐、波浪、暴潮 偏差及潮流的模 式驗證,精度評估 的指標及量化結 果為何?	感謝委員建議。 分析結果補充至3.3.1節中。
(四)計算台東是否溯 升及越波量的外 海入射波條件的 週期如何決定?入 射波角度為何?	外海週期以颱風風浪經驗式3.83√H給定;而入射波向 則以考慮最劣情況,以正向入射為主,相關敘述已於修 正報告中補充。
 (五)計算有溯升及越 波量潛勢可能路 段,與黃及朱 (2013)的結論有所 差異,內文也有探 討原因。是否可以 判斷二者研究結 果的可信? 	感謝委員意見。 本計畫所分析之越波潛勢路段域與黃及朱(2013)提及 潛勢路段相似,惟越波量大小差異較大。除期末報告所 提(1)設計條件有所差異、(2)地形水深不同(3)溯升公式 差異外,本團隊再次檢視越波量差異較大路段,並透過 衛星資料重新給定相關海岸坡度地形,以利更合理計 算越波量,相關修改內容參見修正報告4.2.1節。
四、蘇委員青和	
 (一)2.6節衛星影像比對圖 2.9與2.10之 地形變遷是否有 考慮潮位變化因 子,影像解析度灘 線變化量大小也 要納入考量。 	感謝委員意見。 圖2.9與圖2.10所使用的衛星影像為中央大學太遙中心 所提供之免費介接圖資,因此並無詳細的拍攝時間資 訊,導致無法透過潮位修正來得知較精確的灘線變化。 為避免此分析結果產生誤解,因而於修正報告中移除 此部分內容,並於第五章中,透過「無償圖資」(可取 得詳細拍攝時間)針對致災區域來分析灘線變化,並輔 助潮位修正方式,以強化灘線探討之合理性。灘線分析 相關內容請參閱修正報告5.4節。
(二)第四章公路溢淹 致災分析,除道路 高度、岸前波高	感謝委員意見。 本團隊已再次檢視各路段沙灘坡度情況,並重新給定 相關海岸坡度地形,以利更合理計算溯升高度與越波

(暴潮)、沙灘坡度 也建議納入考量, 分析結果宜與歷 年溢淹事件做較 完整的比對驗證。	量,相關修改內容參見修正報告4.2.1節。此外,亦補充 蒐集養工處公路溢淹致災區域資料,與本計畫分析資 料進行比對及驗證,相關修改內容可參見修正報告4.3 節。
 (三)第五章地形變遷 分析成果,相關圖 宜標示河川、結構 物(防波堤、突提 等)位置,分析結 果宜與歷年相關 文獻做較完整的 比對。 	感謝委員意見。 本團隊已再次檢視各路段沙灘坡度情況,並重新給定 相關海岸坡度地形,以利更合理計算溯升高度與越波 量,相關修改內容參見修正報告5.3節。此外,亦補充 蒐集往昔資料,與本計畫分析資料進行比對及驗證,相 關修改內容可參見修正報告5.4節。
(四)討論應加強第四 章及第五章之成 果論述,溢淹段及 侵淤段較嚴重處 應加強說明。	感謝委員建議。 已於修正報告中新增4.3與5.4節,其內容除針對本計畫 災害特性分析結果作比對及驗證外,亦有加強說明較 嚴重之溢淹段及侵淤段。
 五、李委員俊穎 (一)請補充說明模式 河川輸砂部分條 件。 	感謝委員建議。 漂沙計算條件以補充於5.1節
 (二)請補充說明侵蝕 災害潛勢分類基 準。 	感謝委員意見。 此部分內容已補充至修正報告,請參見3.4.4節
(三)請加強補述目前 近域分三段原因 及依據。	感謝委員意見。 已於修正報告中補充相關內容,請參見3.4.3節及表3-9
(四)建議補述所推估 可能致災區域驗 證。	感謝委員意見。 於修正報告中,已新增4.3及5.4節,並已將致災區域驗 證內容補充至兩章節中。

附錄三 PTM 模式理論

附錄三 PTM 模式理論

PTM(Particle Tracking Model)計算分為兩個部分:第一部分為「歐拉輸砂計算」如: 沈積物活動度、底床形成過程等等,第二部分則為「拉格朗日輸砂計算」如:砂的活動 特性、夾帶作用、對流、分散及沉降。

1、 歐拉輸砂計算

經由顆粒軌跡模型的計算,不管是關於沈積物平流、侵蝕還是沈澱,在研究 領域中都必須先對一些基本的輸砂參數做出定義。其包括了近底床流況、底床剪 應力、底床形成及沈積物顆粒流動性。

(1) 粗糙度

模式中的底床糙度是基於底床表面的粒徑大小來計算的。粒徑中位數 D_{50} 被用以計算底床形成(bed forms),其提供了型態糙度(form roughness)。90%粒徑 D_{90} 被用以計算表面糙度(skin roughness)。

(2) 剪應力

剪應力是流況與底床狀態的函數。在 PTM 中會計算四種剪應力:

因表面摩擦力 (skin friction)、由流產生的剪應力 τ_{i}

因形狀阻力 (form drag)、由流產生的剪應力 τ

因表面摩擦力、由波產生的剪應力工。

因形狀阻力、由波產生的剪應力 т,

對於因形狀阻力由流產生的剪應力 τ_{a} ,形狀粗糙高度 k_{a} 是結合底床形狀長度(bed form length)及陡峭度(steepness)來估算的。PTM 工具的計算剪應力的方法可 見於 van Rijn, 1993。以下是這些方法的概述: 底床剪應力(bed shear stress)可由水深平均速度 \overline{U} 獲得,如:

附 3-1

$$\tau_c^{"} = \frac{\rho \overline{U}^2}{C^{"2}} \tag{1}$$

 ρ 為水密度, C 是無因次 Chézy 常數, 在劇烈紊流中約為:

$$C' = 2.5 \ln \left(11 \frac{h}{k_s'} \right) \tag{2}$$

其中h為流深度 (flow depth,(m))。

底床剪力速度(bed shear velocity, u_{*} (m/sec)如此計算:

$$u_* = \sqrt{\frac{\tau_c^{"}}{\rho}} = \frac{\overline{U}}{C^{"}}$$
(3)

對於劇烈紊流,底床剪力速度 u_* 與流深 $h、流的特徵糙度k_*$ 、以及 \overline{U} 有關:

$$u_* = \frac{\overline{U}}{2.5\ln\left(11\frac{h}{k_s}\right)} \tag{4}$$

對於因表面摩擦力由流產生的剪應力_t,這裡引入了用以代表底床表面粗糙 度或底床表面砂粒徑大小的粗糙高度k,。在 PTM 中,對於可侵蝕底床,表面糙 度直接代入三倍的D₉₀,其中D₉₀表示此粒徑下有百分之 90 的沈積物粒徑比這個 值更小(由重量計量)。這個值在模式介面中您可以修改為您指定的數值。

當處於波流交互作用時,情況會變得較為複雜。此情況下,摩擦力的影響不 能獨立界定,相反地,必須考慮交互作用帶來的影響。經多份著作顯示,在近底 床的波流交互作用下,得調整能量消散及底床剪應力。(參見 Bijker 1966; Kemp and Simons 1982; O'Connor and Yoo 1988)舉例來說,精細的近底床相關觀測顯 示,由於波浪造成的渦黏度增加,導致近底床的流的速度會有所減少。

PTM 模組合併了兩種不同的演算法以計算結合波流交互的剪應力 τ'及τ'。 此為 O'Connor(1988)及 van Rijn(1993)的演算法。

(3) 漂沙運動之啟動的臨界值

底床沈積物的運動及顆粒沈積的臨界值通常透過 Shields 曲線來定義(參見 Yalin(1977)的第四章),引用無因次 Shields 參數θ:

$$\theta = \frac{\tau}{\rho g \left(s - 1\right) D} \tag{5}$$

g為重力加速度, s為砂粒比重, D為特徵粒徑。無因次臨界 Shields 常數(critical Shields parameter, θ_{cr})即為能開始造成輸砂的 θ :

$$\theta_{cr} = \frac{\tau_{cr}}{\rho g \left(s - 1 \right) D} \tag{6}$$

此處剪應力為臨界剪應力 r_{cr}, 即對應到開始造成輸砂的情況。

Soulsby and Whitehouse(1997)為了預測開始造成輸砂的條件,以無因次粒徑 D_{er}為函數重新試驗了 Shields 曲線:

$$D_{gr} = D_{50} \sqrt[3]{\frac{(s-1)g}{v^2}}$$
(7)

 D_{50} 表示一半重量的沈積物粒徑小於此粒徑大小的值, v為流體的運動黏滯性 (m²/sec) Soulsby and Whitehouse(1997)展示了以下以 D_{gr} 為其函數的 θ_{cr} 解析解,其為:

$$\theta_{cr} = \frac{0.30}{1 + 1.2D_{gr}} + 0.055 \left[1 - e^{-0.02D_{gr}} \right]$$
(8)

式(8)的解顯示在圖 1。Soulsby and Whitehouse(1997)也表示在剪應力為軌跡 近底床剪應力峰值 (peak orbital near-bed shear stress)的情況時的波動可以應用 同種 Shields 標準。雖然 Stive 等人(2005)認為在波浪造成的輸砂中, Shields 參數 的使用是因加速度項的不相容而受到限制的。這對於會受到相對短波影響的較 粗砂質是一大缺點,對於廣範圍的波浪條件下的砂質, Shields 曲線法提供了合 理的輸砂活動度估算(particle transport mobility)。

圖 1 水流作用下的輸砂臨界值(Sediment transport threshold under currents)

(4) 輸砂活動度

無因次活動度 M 為「作用於底床的表面剪應力」τ'與「臨界剪應力」τ_c的比值:

$$M = \frac{\tau}{\tau_{cr}} = \frac{\theta}{\theta_{cr}}$$
(9)

臨界剪應力 τ_{rr} (Pa),可以此計算:

$$\tau_{cr} = \theta_{cr} \rho(s-1) g D \tag{10}$$

無因次輸砂參數T也常被用以估算活動度,其為:

$$T = \frac{\tau - \tau_{cr}}{\tau_{cr}} = M - 1$$
(11)

經由在計算域中已知的定點(底床表面)沈積物及流況的分布,就可以計算 底床沈積物(及底床上的顆粒)的活動度了。活動度的時空分布圖是非常有用的 工程工具,PTM 中的 SMS 介面中提供了使用者設定選項,以便使用者儲存這些 時空分布資料。

(5)底床形態計算

若要計算因形態阻力造成的剪應力τ"以及由底床提供的總流抗力,則估算底

床的幾何形狀是必要的。在波流共存時的底床形狀平衡維度(equilibrium dimensions of bed forms)中,流的部份是參考 van Rijn(1984c)的方法,波流共存的部分是以 Mogridge 等人(1994)的方法計算。

Van Rijn(1984c)的底床形狀及糙度的計算方法如下,其中平衡底床形狀高度 η_b (equilibrium bed form height)是基於活動度、流深(flow depth)及粒徑來決定

$$\eta_{b} = 0 \qquad M \le 1$$

$$\eta_{b} = 0.11h \left(\frac{D_{50}}{h}\right)^{0.3} \left[1 - e^{-0.5(M-1)}\right] (24 - M) \qquad 1 < M \le 24$$

$$\eta_{b} = 0 \qquad M > 24$$
(12)

此為穩態方程式,活動度小於1(無輸砂)時或在活動度大於24(會淘洗掉 底床形狀的高流況)時,是預測不出任何底床形狀。式(12)的繪圖可見於圖2。

對於極細砂質(*D*₅₀ < 0.05 mm),底床形狀無法發展。於 PTM 中, 若 *D*₅₀ < 0.05 mm, 則假設底床糙度僅以表面摩擦力來定義,如:

圖 2 在不同活動度, Van Rijn (1984c)對以相對深度為底床形狀高度函數的預測

以上的公式可計算平衡底床形狀高度(equilibrium bed form height)。在自然 界中,底床形狀不斷因流況改變而調整。底床形狀變化率與局部底床載輸砂率 (local bed load transport rate 有關 (van Rijn 1984a; Nielsen 1992)。在 PTM 中應用 了一個簡單的算法以使底床形狀可由原本的高度逐漸調整成其新的平衡高度。 底床形狀高度變化率與總輸砂有關。在這個情況,PTM用了輸砂抬升率q_p (m/sec) (transport pickup rate)來估算底床形狀的最大時變率。在模擬時間點t時,存在於 底床上的底床形狀高度η會與預測公式計算得的平衡底床形狀高度η_b進行比較。

$$k'_{s} = 3 \cdot D_{90}$$
 (14)

此處假設底床形狀高度會對流況的變化即時做出反應。

(6) 輸砂勢能率(Potential transport rate):

PTM 需要計算域的輸砂勢能率來計算輸砂之梯度以推估定點底床侵蝕或沈積的潛勢。輸砂勢能率被用來計算一個沈積物顆粒在沈積後被埋沒的概率。這個可以被輸出及標示成圖的資訊可用來當作計算域中的輸砂狀態的指標。

針對波流共存時的總輸砂勢能率,PTM 有兩種演算方法提供選擇: Soulsbyvan Rijn(Soulsby 1997)及 van Rijn(1993)。Soulsby-van Rijn 的總輸砂方程式 (Soulsby 1997)為:

$$q_{t} = A_{s}\overline{U} \left[\left(\overline{U}^{2} + \frac{0.018}{C_{D}} \overline{U}_{rms}^{2} \right)^{\frac{1}{2}} - U_{cr} \right]^{\frac{2}{4}}$$
(15)

其中

$$A_{s} = A_{sb} + A_{ss} \tag{16}$$

$$A_{sb} = \frac{0.005h \left(\frac{D_{50}}{h}\right)^{1.2}}{\left[g\left(s-1\right)D_{50}\right]^{1.2}}$$
(17)

$$A_{ss} = \frac{0.012D_{50}D_{gr}^{-0.6}}{\left[g\left(s-1\right)D_{50}\right]^{1.2}}$$
(18)

$$C_D = \frac{0.4}{\left[\ln\left(\frac{h}{z_0}\right) - 1\right]^2} \tag{19}$$

U_{cr} 為臨界速度:

$$U_{cr} = \begin{cases} 0.19 D_{50}^{0.1} \log_{10} \left(\frac{4h}{D_{90}}\right) & D_{50} < 0.5 \,\mathrm{mm} \\ 8.5 D_{50}^{0.6} \log_{10} \left(\frac{4h}{D_{90}}\right) & D_{50} \ge 0.5 \,\mathrm{mm} \end{cases}$$
(20)

2、 粒子傳輸輸砂計算

於不同之操作的模式,各種計算都會表現得不一樣。例如,平流速度在 2D 及 Q3D 模式中的計算將會需要計算懸浮及底床載的濃度剖面,然而 3D 模式僅 需顆粒的位置來計算,與定點輸砂(local transport)無關。其他的計算,諸如沉降 速度等等。

(1)顆粒位置(Particle position):

PTM 使用了一種二階的預測校正法來求解於時間*t*+*dt*,在三個維度:*x*,*y*, *z*的顆粒位置。以下將以*x*方向為範例闡述。第一種方案使用了當下的顆粒時空 坐標資料來預測顆粒在一半時距後的位置*x*',如:

$$x' = x_n + \frac{1}{2} \left(u_A dt + u_D dt \right)$$
(21)

其中 $u_A \mathcal{B} u_D \mathcal{D}$ 分別是(在位置x與時距n時的)平流速度與擴散速度(advection and diffusion velcities)。而第二種方案使用了全時距位置資料:

$$x_{n+1} = x_n + u'_A dt + u'_D dt$$
(22)

其中 u'_{A} 及 u'_{D} 分別是(在位置x'與時距 $n+\frac{1}{2}$ 時的)平流速度與擴散速度。這些速度的計算會根據模式而有所不同:

- 2D模式:對於有顆粒特性的沈積物,使用輸砂分布的形心高度的定 點水平速度。
- Q3D模式:使用顆粒形心高度的定點水平速度,其可能依底床交互作 用而變。
- 3. 3D模式:使用顆粒形心高度的定點水平速度。

本文使用 2D 計算其理論將於以下幾節說明。

(2)平流速度(Advection velocity):

在 2D 及 Q3D 模式計算水平平流速度,會需要輸砂分布形心高度的相關知識。於柱狀水體單位中的顆粒濃度為濃度(kg/m³)在深度上的積分:

$$C = \int_{z_0}^h C(z) dz \tag{23}$$

輸砂率(transport rate)為濃度與速度之乘積:

$$\bar{q}_s = \int_{z_0}^h C(z)\bar{u}(z)dz \tag{24}$$

平均顆粒平流流速 \tilde{u}_A (mean particle advection velocity)是由輸砂勢能率除以 沈積物載來計算:

$$\vec{u}_{A} = \frac{\int_{z_{0}}^{h} C(z) \vec{u}(z) dz}{\int_{z_{0}}^{h} C(z) dz}$$
(25)

此平流速度也可以視為是在顆粒輸砂率分布的形心位置上的流的速度。直接在 PTM 中求解此公式將會太過耗時,故接下來將介紹所採用一個更簡易的方法。

懸浮顆粒濃度剖面 (suspended particle concentration profiles) 可以如 Rouse(1939)的形式來假設(見式(26))

$$\frac{C}{C_0} = \left(\frac{\frac{1}{\sigma} - 1}{\frac{1}{\sigma_0} - 1}\right)^{\frac{W_s}{k\beta u_s}}$$
(26)

其中 σ 為由底床起算的相對高度(z/h), $\kappa=0.4$, $\beta=1$, C_0 為於高程 σ_0 的基準底床 濃度。Rouse 濃度剖面形狀被認為能表現出顆粒大小與剪應力在懸浮濃度剖面 的相對影響 (參見圖 3)。

以上的濃度曲線乘積與假設的速度對數分布已結合以計算懸浮載輸砂分布 的形心高度z_s以計算w_s/ĸu_{*}。形心高度迴歸分析可以得到一個懸浮載的形心高度 z_s的表示式,其為w_s/ĸu_{*}之函數(參見圖 4)。

圖 3 基於 Yalin(1977)後的 Rouse 濃度分布,曲線標籤為 $W_s/\kappa u^*$ 的值

圖 4 用以計算懸浮載輸砂形心的關係圖

結果可以得出懸浮載形心高度 Za 之公式:
$$\frac{z_s}{h} = 0.0398.10^{-1.08 \tanh\left[1.2\ln\left(\frac{w_s}{ku_*}\right) - 0.4\right]}$$
(27)

顆粒沉降速度(見圖五) w_s (m/sec)定義為無因次粒徑 D_{gr} 之函數,並可用以下 Soulsby(1997)之近似公式求得,針對細粒徑($D_{gr} < 0.0672$)有做些改寫:

$$\frac{w_s D}{v} = \begin{cases} \sqrt{107.33 + 1.049 D_{gr}} - 10.36 & D_{gr} \ge 0.675\\ 0.0077 D_{gr}^2 & D_{gr} < 0.675 \end{cases}$$
(28)

圖 5 沈積物沉降速度

懸浮載之平流速度u, (m/sec)為於高程z, (m)之速度, 其為對數函式:

$$u_{s} = 2.5u_{*}^{"} \ln\left(30\frac{z_{s}}{k_{2}^{"}}\right)$$
(29)

底床載是用一以速度u,行進的均勻厚度層表示。底床載速度之估算已由 Yalin(1977)、van Rijn(1984a)作討論。在 PTM 中,底床載速度是以 Engelund and Fredsoe(1976)之關係式來估算:

$$u_b = u_* \left(10 - \frac{7}{\sqrt{M}} \right) \tag{30}$$

總砂載的加權平均速度是由懸浮載與總砂載之比值 q_s/q_r進行計算。此比值 可透過預測輸砂垂直剖面之積分來取得。一個更簡單的關係式將在接下來的圖 以潁線疊加的樣式來表現。

圖 6 是基於 van Rijn(1984b)以及 Guy et al.(1966)的數據資料來進行調整的。 此曲線函式如:

$$\frac{q_s}{q_r} = 0.5 \tanh\left\{1.3\left[\ln\left(\frac{u_*}{W_s}\right) - 0.3\right]\right\} + 0.5$$
(31)

(32)

沈積物顆粒的平流速度是基於底床載與懸浮載成分的高程來進行計算。總 砂載的加權平流速度u。可由懸浮載與底床載的比值來獲得:

圖 6 懸浮載與總砂載之比值

底床起算之高程對應之速度可基於流之分布為對數函數的假設來進行計算: $u(z) = u_*^{"} \left[5.75 \log_{10} \left(\frac{z}{k_s^{"}} \right) + 8.5 \right]$ (33)

此高度為輸砂形心高程之,其可以此求得:

$$z_{c} = k_{s}^{"} \cdot 10^{\left[0.1739\left(u_{c}/u_{*}^{"}\right) - 1.47826\right]}$$
(34)

水平平流速度ū_A,即2D模式中的速度:

$$\vec{u}_A = u_*^{"} \left[5.75 \log_{10} \left(\frac{z}{k_s^{"}} \right) + 8.5 \right] \frac{\overrightarrow{U}}{|U|}$$
(35)

此水平平流速度在 PTM 中解出為向量形式。

2D 模式中,所有的顆粒都是在其所處之輸砂粒徑形心高度上游移,故平流 速度無垂向成分。然而,顆粒還是可能在垂直方向上移動,這是因為形心高度會 依流體動力之因素而改變。

附錄四

極端事件災害特性分析

附錄四 極端事件災害特性分析

進一步模擬莫蘭蒂颱風災害情形,莫蘭蒂颱風為近十年來幾年來, 於台東浮標站測得颱風波高超過15米,期颱風路徑如圖1所示,颱 風期間之波浪條件如圖2所示,整體而言莫蘭蒂颱風期間計畫波浪以 東向以及東南向為主,進一步將波浪最大時刻波場,波浪引致流場, 以及颱風過後地形變化圖繪出,如圖3~5,由圖3結果可見,波浪在 傳遞的過程中除了南興至大武段,其沿岸坡度較緩坡浪受地形影響, 消波作用較明顯外,其他兩區段則不明顯,圖4為波浪引致流場結果, 由於波浪以東南向入射,故整體沿岸流以往北向為主,圖5為颱風波 浪作用後,其地形變化結果,結果顯示,於颱風條件作用下,波浪造 成結果已侵蝕為主,且集中在近岸地帶。

圖1 莫蘭蒂颱風路徑圖

圖 3 莫蘭蒂颱風觀測期間颱風最大波場模擬結果(南興至大武段)

良段)

圖 3(續 2) 莫蘭蒂颱風觀測期間颱風最大波場模擬結果(香蘭段至三 和段)

段)

至多良段)

圖 4(續 2) 莫蘭蒂颱風觀測期間颱風最大波引致流場擬結果(香蘭段 至三和段)

圖 5 莫蘭蒂颱風過後地形變遷結果(南興至大武段)

圖 5(續 1) 莫蘭蒂颱風過後地形變遷結果(加津林至多良段)

附錄五

期末審查簡報

品項	特點	說明	
中央大學 太遙中心 ^{免費介接圖}	 ✓ 1996年~2017年 ✓ 無法得知影像確切時間(月份) ✓ 解析度:10m 	✓ 近岸結構物對海岸 變化之影響	
Google Earth 下載圖責	 ✓ 2011年~2018年 ✓ 影像時間不連續 ✓ 無法得知影響確切時間(時、分) ✓ 解析度:5m 	 ✓ 季節性漂砂特性 ✓ 灘線量化評估 	
中央大學太 遙中心	✓ 2004/09/1~ 2014/10/21	√ 潍坞景小亚什	

「」」 財 国 法 人 成 大 研 究 登 展 基 金 合 NCKU Research & Development Foundation

30

