災害防救應用科技方案

『結合定量降雨預報之橋梁沖刷 深度推估研究』

成果報告書書

國家實驗研究院

台灣颱風洪水研究中心

中華民國 103 年1月

目	錄

第一章、前言	2
第二章、研究方法	2
2.1 颱洪中心定量降雨預報	3
2.2 集水區降雨逕流推估模式	3
2.3 一維河道演算模式	4
2.4 橋墩沖刷深度推估	4
第三章、研究成果	8
3.1 降雨逕流模式與河道水理模式之整合銜接	8
3.2 橋墩周圍局部河道範圍之沖刷模擬	9
3.3 現地雷達降雨觀測與橋墩沖刷觀測實驗	11
3.4 橋梁水位與沖刷深度預報系統之建置	12
第四章、結論	12
參考文獻	13

第一章、前言

臺灣近年來發生數起橋梁遭颱風洪水沖毀的事件,造成人命及財 產的嚴重損失。因此,在颱風洪水來臨之前,若能夠事先掌握洪水對 橋墩造成之可能最大沖刷深度,並經過橋梁耐洪能力評估,進一步得 知橋梁的安全性,能作為相關單位決策之參考,有效減輕颱風洪水造 成橋梁沖毀或倒塌的災害損失。本研究目的係以濁水溪流域特定橋墩 為目標,結合定量降雨預報實驗,發展橋梁水位預報系統及橋墩沖刷 深度模擬技術,可推估橋墩受洪水影響之可能最大沖刷深度。

第二章、研究方法

為符合防災應變之需求,希望預報系統於颱風來臨期間能夠快速 且穩定地進行水位及沖刷深度之預報,然而以現階段水砂物理機制不 足之前提下,進行氣水砂耦合數值求解,會係各極大的挑戰。因此, 本研究利用兩大途徑:建置氣水整合系統及推估橋墩總沖刷深度曲線, 以建置橋墩水位及沖刷深度推估系統。氣水整合主要目的為建置橋墩 水位預報系統,主要係承接定量降雨系集預報實驗結果進行雨量預估, 並利用逕流模式 KW-GIUH 推估集水區之出流歷線,接著透過集水區 模式 WASH123D 中的一維河道演算,進行橋墩水位預報。此外,橋 墩總沖刷深度曲線推估之目的則係建立沖刷深度與水深的關聯性,藉 由二維水理模式之使用,進行不同洪水情境下之橋墩沖刷模擬分析, 建置沖刷資料庫。圖1所示為本研究流程。

茲將本研究所採用的颱風定量降雨系集預報、集水區逕流推估 KW-GIUH 模式、河道一維演算 WASH123D 模式、以及二維水理模 式,說明如下:

2.1 颱洪中心定量降雨預報

對降雨逕流與河道演算模式而言,降雨往往是演算結果的重要因 素,而在長延時的雨量預報方面,大氣領域學者大多是以天氣數值模 式方式,進行定量降雨預報(Quantitative Precipitation Forecast,簡稱 QPF), 颱洪中心所使用之數值天氣預報模式 WRF(The Weather Research and Forecasting Model,簡稱 WRF),係由美國 NCAR 等單位 共同發展的新一代中尺度數值天氣預報模式。此外,為增加災防單位 應變作業時可參考之資訊,並協助提升災害防救效能,颱洪中心更結 合學界與相關單位之研發能量,共同進行「颱風定量降雨數值模式系 集預報實驗」,測試定量降雨預報技術;參與實驗的單位包括中央氣 象局、國家高速網路與計算中心、國家災害防救科技中心、國立台灣 於學、 國立中央大學、國立台灣師範大學及中國文化大學。預報實 驗每日提供四次、每次約二十組系集預報實驗結果。而實驗之模式系 集成員,係分別考慮不同物理參數化、不同資料同化方法及不同模式 的最佳組合而設計,以求降低系集預報的不確定性。

2.2 集水區降雨逕流推估模式

承接定量降雨系集預報實驗之預估雨量,可利用運動波-地貌瞬 時單位歷線法(kinematic-wave based geomorphic instantaneous unit hydrograph,簡稱 KW-GIUH)(Lee and Yen, 1997),計算出所研究集水 區之降雨逕流歷線。此模式係海洋大學李光敦教授所發展,已證實在 實際工程具有良好的應用,其理論是依集水區河川網路特性,以 V 型漫地流模型模擬每一級序之次集水區,將水流於此漫地流模型之運 行,劃分為漫地流與渠流過程,並應用運動波理論以解析方式,直接 求解逕流時間機率密度函數之平均值。由於此模式可藉由在運動波理 論中,降雨強度之增減,反應出降雨強度對集水區逕流歷線之影響。 因此,本研究將用以此模式推估集水區之逕流。

2.3 一維河道演算模式

WASH123D 模式,係以物理理論為基礎(physic-based)的集水區 計算模式,可模擬多種自然環境(multimedia),處理多種水文過程 (multi-processes);且該模式可模擬集水區在一維河川溪流網絡、二維 的漫地流區域及三維的地下水域中隨密度變化的水流,以及模擬熱、 鹽度、沉澱物和水質等傳輸過程。於一維的河道演算,WASH123D 根據質量與能量守恆方程式,求解一維的 St Venant 方程式,分別以 有限元素法(finite element method)與質點追蹤法(particle tracking approach)兩種數值方法,可求解動力波(fully dynamic wave)、擴散波 (diffusive wave)與運動波(kinematic wave)模式,亦根據實際狀況,可 考慮不同的邊界條件以及河川構造物,進行水理演算。由於 WASH123D 一維模式部份可以整合逕流模式,進行完整的集水區水 文模擬,因此本研究將以此模式進行橋梁水位模擬。

2.4 橋墩沖刷深度推估

由於橋墩周圍複雜的水流型態(Melville and Coleman, 2000),且目 前局部沖刷的水理學仍未能被充分瞭解,故橋墩局部沖刷數值模擬具 有一定的挑戰性。一般而言,大部分的三維模擬研究雖可獲得精確的 沖刷模擬結果,但仍著重在單一橋墩之定量流計算,且模擬計算會耗 費大量計算時間,無法符合防災應用之需求。所以,應用二維模式於 橋墩沖刷之模擬,不但能夠進行大範圍河道之模擬分析,且能夠進行

複數橋墩之沖刷模擬,較能夠符合橋墩沖刷預警之需求。

本研究使用 Lai (2009, 2010)所發展之二維水理模式,該模式可適 用於天然具不規則地形之河道洪水演算、及水工結構物周遭水流之模 擬,可進行穩態流及非穩態流之模擬,並可同時模擬亞臨界流、過渡 臨界流及超臨界流。先以水理模式進行模擬,再藉由經驗公式推估橋 墩局部沖刷深度。為有效選用局部沖刷深度之推估式,本研究參考前 人的研究成果(交通部,2001),選用交通部公路總局之6種公式,進 行局部沖刷深度之推估。茲將公式說明如下:

(1) Laursen (1958, 1962)

$$\frac{D_{p}}{y_{1}} = \begin{cases} 5.5 \frac{y_{s}}{y_{1}} \left[\left(\frac{y_{s}}{11.5 y_{1}} + 1 \right)^{1.7} - 1 \right] & \text{live-bed scour} \\ 5.5 \frac{y_{s}}{y_{1}} \left[\left(\frac{y_{s}}{11.5 y_{1}} + 1 \right)^{7/6} \left(\frac{\tau_{1}}{\tau_{c}} \right)^{-0.5} - 1 \right] & \text{clear-water scour} \end{cases}$$
(1)

其中,y_s為局部沖刷深度(m);y₁為墩前水深(m);D_p為墩柱迎水寬度 (m);τ₁為臨近上游段的底床剪應力(N/m²);τ_c為臨界底床剪應力(N/m²)。 如果水流順著墩柱方向,由(1)式求得之沖刷深度需再乘以一橋墩鼻 端形狀修正因子 K_s。如果水流不順著墩柱方向,由(1)式求得之沖刷 深度需再乘以一水流攻角修正因子 K_θ。該公式之實驗模擬條件為濁 水沖刷、清水沖刷、非黏聚性土壤。

(2) Neill (1964)

$$\frac{y_s}{D_p} = 1.5 \left(\frac{y_1}{D_p}\right)^{0.3} \tag{2}$$

其中, y_s為局部沖刷深度(m); y₁為墩前水深(m); D_p為墩柱迎水寬度 (m)。該公式之實驗模擬條件為濁水沖刷、非黏聚性土壤。 (3) Shen et al. (1969)

$$y_s = 0.000223 \left(\frac{V_1 D_p}{v}\right)^{0.619}$$
 (3)

其中, y_s為局部沖刷深度(m); D_p為墩柱迎水寬度(m); V₁墩前水深平 均流速(m/s); v為水流之運動黏滯係數(=10⁻⁶ m²/s)。該公式之實驗模 擬條件為清水沖刷、非黏聚性土壤。

(4) Jain and Fischer (1980)

$$\frac{y_s}{D_p} = \begin{cases} 2.0 \left(\frac{y_1}{D_p}\right)^{0.5} \left(Fr_1 - Fr_c\right)^{0.25} = y_{s1}^* & \text{live-bed scour: } (Fr_1 - Fr_c) > 0.2 \\ 1.84 \left(\frac{y_1}{D_p}\right)^{0.3} \left(Fr_c\right)^{0.25} = y_{s2}^* & \text{clear-water scour: } Fr_1 < Fr_c \\ \max(y_{s1}^*, y_{s2}^*) & 0 \le (Fr_1 - Fr_c) \le 0.2 \end{cases}$$
(4)

其中, y_s 為局部沖刷深度(m); y_1 為墩前水深(m); D_p 為墩柱迎水寬度 (m); V_1 墩前水深平均流速(m/s); F_{I_1} 為墩前水流福祿數(= $V_1/\sqrt{gy_1}$); F_{I_c} 為泥砂起動臨界流速所對應之水流福祿數(= $V_{cr}/\sqrt{gy_1}$); V_{cr} 為泥砂起動 臨界流速(m/s)。該公式之實驗模擬條件為清水沖刷、濁水沖刷、非黏 聚性土壤、圓形橋墩。

(5) Froehlich (1988)

$$y_s = 0.32K_s D_p^{0.62} y_1^{0.47} F r_1^{0.22} d_{50}^{-0.09} + D$$
(5)

其中, y_s 為局部沖刷深度(m); y_1 為墩前水深(m);D為墩柱寬度(m); D_p 為墩柱迎水寬度(m); V_1 墩前水深平均流速(m/s); Fr_1 為墩前水流福 祿數($=V_1/\sqrt{gy_1}$); d_{50} 為河床中值粒徑(m); K_s 為橋墩鼻端形狀修正因 子,方鼻端 $K_s = 1.3$,圓鼻端 $K_s = 1$,尖鼻端 $K_s = 0.7$ 。該公式之實驗模 擬條件為清水沖刷、非黏聚性土壤。此外, Froehlich 指出上式中"+D" 7為基於設計目的而加入安全係數之最大沖刷深度估算。

(6) 修正 CSU(Colorado State University)公式(HEC-18)

$$\frac{y_s}{y_1} = 2K_s K_{\theta} K_3 K_4 \left(\frac{D_p}{y_1}\right)^{0.65} F r_1^{0.43}$$
(6)

其中, y_s 為局部沖刷深度(m); y_1 為墩前水深(m); D_p 為墩柱迎水寬度 (m); V_1 墩前水深平均流速(m/s); Fr_1 為墩前水流福祿數(= $V_1/\sqrt{gy_1}$); K_s 為橋墩鼻端形狀修正因子,可表示如下:

$$K_{s} = \begin{cases} 1.1 & \text{square nose} \\ 1.0 & \text{round nose} \\ 1.0 & \text{circular cylinder} \\ 1.0 & \text{group of cylinders} \\ 0.9 & \text{sharp nose} \end{cases}$$
(7)

 K_{θ} 為水流攻角修正因子,可表示如下:

$$K_{\theta} = \begin{cases} \left(\cos\theta + \min(12, L/D_{p})\sin\theta\right)^{0.65} & 非圓柱形橋墩\\ 1.0 & 圓柱形橋墩 \end{cases}$$
(8)

其中, θ 為水流方向與橋墩之夾角, $若\theta > 5^{\circ}$,取 $K_{\theta} = 1$;L為橋墩長(m); K_{3} 為底床形態修正因子,可表示如下:

$$K_{3} = \begin{cases} 1.1 & \text{ 清水沖刷} \\ 1.1 & \text{ \leftarrow 0.6 < } H_{d} < 3 \\ 1.1 \sim 1.2 & \text{ \leftarrow 3.0 < } H_{d} < 9 \\ 1.3 & \text{ \leftarrow H}_{d} > 9 \end{cases}$$
(9)

式中, H_a 為砂丘之高度(m)。 K_4 為河床粒徑護甲效應修正因子(須強制 $K_4 \ge 0.4$),可表示如下:

 $K_{4} = \begin{cases} 1 & \text{if } d_{50} < 2 \text{ mm or } d_{95} < 20 \text{ mm} \\ 0.4 \left(\frac{V_{1} - V_{icd_{50}}}{V_{cd_{50}} - V_{icd_{95}}} \right)^{0.15} & \text{otherwise} \end{cases}$

(10)

其中, $V_{icd_x} = 0.645(d_x/D_p)^{0.053}V_{cd_x}$ (m/s); $V_{cd_x} = 6.19y_1^{1/6}d_x^{1/3}$ (m/s); d_x 為底 床累積過篩 x%的粒徑大小(m)。

第三章、研究成果

3.1 降雨逕流模式與河道水理模式之整合銜接

在結合定量降雨實驗進行水位預報前,分別先以 2009 莫拉克颱 風與 2012 年蘇拉颱風事件進行模式測試。本計畫選定濁水溪流域, 利用數值高程模式劃分集水區(圖 2 所示)及推求各分區地文因子,包 括集水區面積、河流長度、次集水區面積、次集水區平均坡度以及荷 頓比值等;接著根據各次集水區範圍內之雨量站(合計 35 座雨量站), 應用徐昇氏多邊形法之雨量平均,計算各分區之逐時平均降雨量;最 後,針對各上游次集水區,應用 KW-GIUH 模式,進行各次集水區之 降雨逕流模擬,以求得各次集水區之出流量。圖 3 及圖 4 分別為為濁 水溪上游寶石橋流量站與中下游之延平橋流量站之模擬結果,結果顯 示不論在尖峰量模擬、洪峰到達時刻或歷線上升段與退水段之模擬, 大致上可獲得良好的模擬結果,其模擬尖峰誤差均在 5 % 內。

在 WASH123D 模式之測試方面,先進行河川大斷面地形資料之 建置,如圖 5 所示,模擬範圍從上游寶石橋與新城橋至下游出海口, 其中水位站計有寶石橋、彰雲大橋、溪洲大橋、自強大橋及西濱大橋 共 5 站。接著,以 2009 年莫拉克颱風為例,使用 WASH123D 一維河 道模式進行濁水溪河川水位演算,模擬時間分別為 2009 年 8 月 7 日

00:00 至 8 月 10 日 23:00 共 96 小時,及 2012 年 8 月 1 日 13:00 至 8 月 5 日 12:00 共 96 小時,圖 6 為莫拉克颱洪事件下之彰雲大橋、溪 洲大橋及自強大橋之水位模擬結果與觀測值之比較。結果顯示,雖然 退水時段之水位誤差較大,但模擬趨勢與觀測結果一致。

完成 KW-GIUH 模式與 WASH123D 模式之個別測試後,接著進 行兩模式之銜接測試。以 KW-GIUH 模式計算之上游集水區及次集水 區流量作為 WASH123D 模式之輸入條件,進行河道模擬演算。由圖 7 可知,於莫拉克颱洪事件所模擬之水位趨勢大致與觀測水位相同, 唯洪峰時刻偏移約1~2小時,洪峰水位值也較小,彰雲橋的水位誤 差有 0.8 m,溪洲大橋水位誤差為 0.05 m,自強大橋水位誤差則約為 0.2 m。

3.2 橋墩周圍局部河道範圍之沖刷模擬

本研究模擬區域為濁水溪大斷面編號 44(上游邊界)至大斷面編 號 26(下游邊界),模擬範圍內包含自強大橋 P1 至 P13,靠近水利署 河川大斷面編號 36 與 37 之間。為建置模擬範圍內之河道地形資料, 採用水利署之 98 年實測大斷面地形資料,並配合 SMS 模式中編置網 格的功能,可獲得非結構性之計算網格,如圖 8 所示,圖中並將自強 大橋附近局部地形之計算網格加密,期能夠獲得較精確的數值解;此 外,河道左右岸兩側與橋墩周圍均設定為不透水邊界;其餘上下游邊 界及河道內部的演算元素均為水流計算之範圍。圖 9 顯示,位於主深 槽的橋墩包含 P6 至 P9,自強大橋上游斷面之主流方向偏向右岸,下 游斷面最低高程為 8 m。

接著蒐集卡玫基及鳳凰颱洪事件下之自強大橋實測水位資料,可

與模擬結果進行比較驗證。在邊界條件之設定方面,上游入流邊界設 定定流量於卡玫基(2008/7/18)及鳳凰(2008/7/29) 颱洪事件下,分別為 4646.84 m³/s 及 2152 m³/s,下游邊界斷面並無實測的水位資料,故採 用一維的 HEC-RAS 模擬分析結果,作為下游定水位出流邊界條件。 表1顯示自強大橋水位模擬結果與量測值間之比較,同時為瞭解模擬 結果與實測值間之差異,本研究採用以下的誤差公式進行比較分析:

$$H_{\eta}^{Difference} = \left(\frac{H_{\eta}^{Simulated} - H_{\eta}^{Measured}}{H_{\eta}^{Measured}}\right) \times 100\%$$
(11)

式中,H^{Simulated}代表水位模擬結果,H^{Measured}則代表水位站的實測值。 表1結果顯示,水位模擬結果與實測值間之誤差小,代表模式能夠合 理反映橋墩周圍之水理現象。

完成模式驗證後,本研究以濁水溪重現期200年、100年、50年、 25年、20年、10年、5年、2年及1.11年之流量,模擬分析不同重 現期洪水條件下,橋墩周圍的水理條件,作為推估橋墩總沖刷深度之 依據。由於模擬範圍之下游邊界斷面須給定水位邊界條件,故擬先進 行一維水理模擬分析河道各斷面水理,可計算出二維水理模擬所需的 下游邊界條件。接著,輸入9個重現期入流量條件,進行二維水理數 值模擬,圖10顯示為200年重現期下流速等值分布結果,圖11為重 現期距5年之流場分布。結果顯示,隨著入流量的增加,河道內流速 亦跟著增大,且水流範圍也逐漸涵蓋到高灘地。茲將各重現期距流量 下自強大橋P7處之水深及流速模擬結果彙整於表2,接著分別採用6 種經驗公式,計算沖刷深度,獲得不同重現期距條件下之沖刷深度, 並彙整於表3所示。基本上,水理條件隨入流量增加而變大,沖刷深

度(平均、最大、最小)則顯示出不同公式造成結果的差異性。差異性 的存在亦代表著,以現階段水砂研究階段,甚難精確評估橋墩沖刷深 度。為了後續耐洪能力評估系統之建置,本研究將6種公式沖刷深度 推估值取平均,並進行迴歸分析,獲得圖12所示之總沖刷深度曲線。 圖出可看出沖刷深度與水深呈現正相關之關聯性,另外,該迴歸曲線 公式的上下限區間代表著推估之不確定性,可藉由未來沖刷深度之監 測資料,進行總沖刷深度曲線之驗證與修正。

3.3 現地雷達降雨觀測與橋墩沖刷觀測實驗

在現地雷達降雨觀測之研究部分,為瞭解蘇力颱風在濁水溪流域 的雷達雨量估計能力,以蘇力颱風降雨最顯著的其中24小時(7月12 日09UTC至7月13日08UTC)雷達回波及地面雨量觀測進行分析。 QPESUMS系統利用最低高度可用回波(HYBREF)計算的雨量產品 (PCP_1H_RAD)的24小時累積雨量如圖13。由於回波與降雨率之關 係會隨著降雨系統的雨滴譜而改變,並未有統一的轉換式,常見的方 法是將兩者之差值進行空間分析再疊加回雷達回波降雨分布空間。氣 象局 QPESUMS 亦有利用地面雨量站修正雷達回波降雨的產品 (CB_GC_PCP_1H_RAD),圖14即為經由地面雨量站修正後之雷達回 波降雨產品,圖中顯示最大降雨量已修正至接近地面降雨強度值,且 空間分布上也改進了不連續的情形。

在橋墩沖刷觀測實驗的研究部分,主要目的係藉由埋磚之方式紀錄河床於洪水前後之變動情形。已於濁水溪名竹大橋成功獲取蘇力颱 風名竹大橋之上、下游河道一般沖刷深度分別為4.14 m與5.94 m; 深槽區第4號橋墩墩柱及樁帽前緣之沖刷深度分別為4.86 m及4.08

m。本研究名竹大橋之現場沖刷觀測實為國內群樁基礎橋梁之首次實 測成果。

現場觀測資料獲取不易,相關觀測資料無論對於該河段之河川工 程(堤防、固床工及丁壩)及橋樑設計(沉箱及群樁基礎)、封橋預警等 實務工程應用與學術基礎研究(二維動床輸砂模式及橋墩局部沖刷深 度推估模式之本土化改進)均有極大之參考價值。

3.4 橋梁水位與沖刷深度預報系統之建置

為有效進行濁水溪橋墩沖刷深度之預報,本研究以橋梁水位預報 為基礎架構,透過總沖刷深度曲線,進行水位及沖刷深度之串接,間 接獲得沖刷深度預報值。本研究目前已完成溪州大橋及自強大橋之水 位預報及沖刷深度之即時推估,配合至多20組定量降雨預報系集雨 量,一天會進行4次預報,一次可預測未來72小時之資訊。系統網 頁如圖15所示,敘明計畫緣由,並提供所採用的沖刷公式。展示介 面如圖16為自強大橋,呈現目前最新實測及模擬之水位,沖刷高程 及底床高程。過去所預報的結果都會儲存於系統資料庫中,如圖17 所顯示,使用者可點選過去之歷時時間即可查詢過去之預報結果;另 外,也可以於結果中滑鼠移動於該位置,可查詢該時間的水位及沖刷 深度,甚至可點選取消不同系集成員的模擬結果。

第四章、結論

本研究以濁水溪自強大橋為研究案例,進行總沖刷深度之推估研究,並藉由 KW-GIUH 模式與 WASH123D 模式之銜接,建立橋梁水 位預報模式;同時以颱洪事件之雨量及水位資料進行模式精確性之驗 證,最後將橋梁水位預報模式及總沖刷深度曲線進行連接,建立橋梁 沖刷深度預報系統。

本計畫之研究成果內容包含:(1)完成濁水溪自強大橋水位預報 模式之建置、(2)完成濁水溪自強大橋之總沖刷深度曲線、(3)完成濁 水溪自強大橋沖刷深度預報系統建置。

在橋梁水位預報模式之建立方面,本計畫完成介接實測雨量之水 位預報模式之驗證,模式能夠預報未來1至24小時水位資訊之功能, 此外在承接定量降雨預報之前,水位預報模式已透過2場的颱洪實測 資料之驗證。此外,總沖刷深度曲線之建立方面,本計畫藉由濁水溪 重現期200年、100年、50年、25年、20年、10年、5年、2年及 1.11年之流量,完成自強大橋周圍局部河道地形之水理模擬及主深槽 橋墩之總沖刷深度曲線建立。

参考文獻

- 交通部,2001,「橋台及橋墩沖刷防治工法之探討」,委託研究計 畫報告。
- 2. Lai, Y. G., 2009. "Watershed runoff and erosion modeling with a hybrid mesh model," *J. Hydrological Engineering*, ASCE, 14(1), pp. 15.
- Lai, Y. G., 2010. "Two-dimensional depth-averaged flow modeling with an unstructured hybrid mesh," *J. Hydraulic Engineering*, ASCE, 136(1), pp. 12-23.
- Lee, K. T., and Yen, B. C., 1997. "Geomorphology and kinematic-wave based hydrograph deviation," *Journal of Hydraulic Engineering*, ASCE., 123(1), pp. 73-80.

5. Melville, B.W., and Coleman, S.E., 2000. "Bridge scour." Water Resources Publications, Littleton, Colo.

表1 自強大橋於卡玫基及鳳凰颱風事件下之實測水位與模擬 水位之比較

颱風事件	實測水位(m)	模擬水位(m)	水位誤差
卡玫基	13.51	13.21	-2.22 %
鳳凰	12.46	12.07	-3.13 %

表2 濁水溪自強大橋於各重現期條件下之水理模擬結果

重現期距(yr)	200	100	50	25	20	10	5	2	1.11
流速(m/s)	6.374	5.933	5.126	5.054	4.642	4.268	4.019	3.354	2.016
水深(m)	8.926	7.662	7.236	7.001	6.348	5.826	5.333	4.871	3.347

舌玥 即 5 (vr)	200	100	50	25	20	10	5	2	1 1 1
重玩劲距(yī)	200	100	50	23	20	10	5		1.11
Laursen (1958, 1962)	6.066	5.794	5.696	5.640	5.418	5.413	5.386	5.058	4.520
Neill (1964)	5.947	5.681	5.584	5.529	5.312	5.307	5.281	4.959	4.431
Shen et al. (1969)	6.871	6.573	6.004	5.952	5.647	5.360	5.165	4.618	3.370
Jain and Fischer (1980)	5.209	4.976	4.891	4.843	4.653	4.648	4.626	4.344	3.881
Froehlich (1988)	4.382	4.219	4.105	4.074	3.940	3.902	3.866	3.663	3.299
修正 CSU	7.124	6.767	6.742	6.650	6.301	5.891	5.538	5.251	3.804
沖刷深度最小值(m)	4.382	4.219	4.105	4.074	3.940	3.902	3.866	3.663	3.299
沖刷深度平均值(m)	5.753	5.493	5.424	5.362	5.120	4.896	4.702	4.457	3.909
沖刷深度最大值(m)	7.124	6.767	6.742	6.650	6.301	5.891	5.538	5.251	4.520

表3 濁水溪自強大橋P7於各重現期下之沖刷深度推估結果

圖 1 濁水溪橋墩水位預報及沖刷深度推估系統建置之研究流程

圖 2 濁水溪各子集水區分區結果圖

圖 3 濁水溪寶石橋流量站於(a)莫拉克及(b)蘇拉颱風之降雨逕流模 擬結果

圖 4 濁水溪延平橋流量站於(a)莫拉克及(b)蘇拉颱風之降雨逕流模 擬結果

圖 5 濁水溪斷面位置與水位站

圖 6 莫拉克颱洪事件之水位模擬結果與觀測值之比較

圖7 KW-GIUH模式與WASH123D模式銜接後於莫拉克颱洪事件之 水位模擬結果

圖 8 濁水溪自強大橋周圍河道水理模擬之計算網格

圖 9 濁水溪自強大橋周圍河道水理模擬範圍之河床高程等值分布

圖 10 濁水溪自強大橋周圍河道水理模擬於重現期距 200 年之流速 等值模擬結果

圖 11 濁水溪自強大橋周圍河道水理模擬於重現期距5年之水深等 值及流場分布結果

圖 13 濁水溪流域雷達回波估計雨量(PCP_1H_RAD)之 24 小時累積 雨量圖(2013 年 7 月 12 日 09UTC 至 7 月 13 日 08UTC)

圖 14 濁水溪流域雷達回波估計雨量(CB_GC_1H_RAD)的 24 小時累 積雨量圖(2013 年 7 月 12 日 09UTC 至 7 月 13 日 08UTC)

圖 15 濁水溪橋墩水位及沖刷深度預報系統之首頁介紹

圖 16 濁水溪自強大橋即時水位及沖刷深度之預測

圖 17 濁水溪溪州大橋於過去歷史事件下之水位及沖刷深度預測結 果