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結合感測、系統識別及健康診斷技術 
探討橋梁結構破壞預警模式及機制(II) 

 
計畫主持人: 羅俊雄 (台灣大學土木工程學系教授) 

 

計畫摘要概括說明(ABSTRACT)： 

台灣由於地理環境特殊，經常受到天然災害的襲擊，其中包括地震、颱風、

洪水與土石流等等，因此重要的基礎建設，例如校舍、橋梁、與隧道等等，其安

全性以及耐久性便成為相當重要的議題。以橋梁為例，近年來有許多橋梁在颱風

侵襲期間因為暴漲的溪水或土石流沖蝕，導致橋面板的陷落以及橋體的損壞，造

成人命傷亡與經濟損失。因此當務之急除了針對現有橋梁進行整體安全性評估之

外，將來更需要發展準確與可靠的橋梁監測系統，對橋梁的安全性進行監測，並

在橋梁損害發生與倒塌之前提供預警訊息，以減少人命與經濟的損失。為了實踐

以振動量測為基礎的橋梁安全監測平台，先前之研究以無線感測模組對宜蘭牛鬥

橋及關渡橋進行長期監測，並採用遞迴性隨機子空間分析法(Recursive Stochastic 

Subspace Identification, RSSI)對收集之量測訊號進行分析，達到橋梁監測之目的。   

本研究之目的在發展一套有效且快速之結構健康診斷之工具，去進行正在使

用中之結構(含橋梁)，利用常態反應之量測資料，進行模態分析 (Operational 

Model Analysis, OMA) 及其特徵(features) 判別方法之研究。並利用所識別之

特徵，同時亦一併進行該結構之快速損壞檢測。對收集到之量測訊號之系統識別

方法，以達到即時(almost real-time)及上線(on-line) 分析方式進行，配合遞迴性

隨機子空間分析法 (Recursive Stochastic Subspace Identification, RSSI-DATA 

&RSSI-COV)進行識別外，探討以減少運算時間為主，達到即時監測之目的。研

究中並針對 SSI 之方法探討分析模式所使用之参數不確定性造成對識別結果之

變異進行討論，以期正確識別結構物之動態特徵。而在快速損壞檢測之研究，以

探討不同損壞指標對結構損壞檢測之敏銳度為主。研究方法將應用於實驗室縮尺

橋梁實驗之沖刷試驗，同時亦嘗試在現地進行橋梁測試，整合此分析軟體於無線

感測器內，進行橋梁結構之微振量測。以期發展準確與可靠的橋梁監測系統，對

橋梁的安全性進行監測，並在橋梁損害發生與倒塌之前提供預警訊息。 

本期中報告首先將針對探討不同損壞指標對結構損壞檢測之敏銳度為主。研

究中推導出四種損傷指標，強調以移動窗函數技術以快速及振動反應量測記錄進

行分析，即時提供預警訊息。研究中亦以大型水工實驗進行驗証。期末報告則包

含檮梁常態監測之振動頻率與環境因素之關聯。並將此技術應用於關渡橋之振動

量測上。 

Part 1: Modeling of Environmental Effects for Vibration-based SHM Using Recursive 

Stochastic Subspace Identification Analysis 

Part 2: Develop On-Line Damage Detection Methods of Bridges under Abnormal 

Conditions 

 



報告內容分兩部份：常態監測及異常狀態下損壞評估。整體架構如圖一所示

之研究架構。 

    

 

            (Part I)                          (Part II) 
 

圖一：研究報告分兩部份：常態監測及異常狀態下損壞評估。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Part 1: 

Modeling of Environmental Effects for Vibration-based SHM Using Recursive 

Stochastic Subspace Identification Analysis 

 

Abstract   This paper deals with the problem of a bridge structure identification 

using output-only vibration measurements under changing environmental conditions. 

Two key issues of a real-life monitoring system are addressed through analysis. The 

first issue is the identification of structural dynamic characteristics directly from 

measurements under operating conditions. The covariance- driven recursive stochastic 

subspace identification (RSSI-COV) algorithm is applied to extract the system 

dynamic characteristics. The second issue is to distinguish the system dynamic 

features caused by abnormality from those caused by environmental and operational 

variations, such as temperature, and traffic loading. In this study a solution is 

proposed to model and remove the uncertainty due to environmental effects from the 

identified system dynamic characteristics from on-going measurements. Nonlinear 

principal component analysis incorporated with AANN is employed to distinguish the 

dynamic feature changes caused by abnormality from those caused by environmental 

and operational variation (i.e. ambient temperature and traffic loadings). Finally, field 

experiment of a bridge is conducted. The variation of the identified system natural 

frequencies was discussed by using the proposed method.       

1. Introduction 

Identification of modal parameters using ambient excitation is more feasible to large 

engineering structures. Those responses caused by ambient excitation can be 

employed in the field of structural health monitoring (SHM) to evaluate the health 

condition of an in-service structure. Generally, the aim of vibration-based SHM 

methods is to detect the appearance of damages by evaluating changes in the 

identified vibration characteristics. In the past, many vibration-based methods were 

developed to monitor structural safety. A common structural monitoring approach is 

the modal analysis, which using output-only system identification technique to 

identify structural modal frequency, modal damping ratio and mode shape from 

vibration data. The extraction of features from these measurements and the analysis of 

these features to determine the current state of health of the system using spaced 

measurement provide a tool for SHM and damage detection. 

Stochastic Subspace Identification (SSI) technique is a well known multivariate 

identification technique by using the output-only measurements which can provide the 

modal analysis of structures under operating condition. The SSI technique proved to 

be numerically stable, robust to noise perturbation and suitable for conducting 

non-stationarity of the ambient excitations. The stochastic realization algorithm 

mainly focused on SSI-DATA and was fully enhanced by Van Overschee and De 

Moor [1] and Peeters, Bart [2-4]. Application of the SSI-DATA algorithm to 



investigate the dynamic characteristics of bridge and aeronautical structures had been 

studied [5-7]. As opposed to SSI-DATA the SSI-COV algorithm avoids the 

computation of orthogonal projection; instead, it is replaced by converting raw time 

histories in co-variances of the so-called Toeplitz matrix, from which the system 

dynamic characteristics can be extracted.  

Different from the off-line analysis, the on-line system identification and damage 

detection based on the measured vibration data has also received considerable 

attention recently. Generally, the recursive Data-driven subspace algorithm is the most 

widely used [8,9]. In order to reduce the effect of noise on the results of identification, 

some filtering techniques need to be used in recursive SSI so as to enhance the early 

emergence of a stable diagram for the identifiable modes and allows finding the best 

choice of system order. Therefore, the recursive stochastic realization by the classical 

Covariance-driven SSI algorithm (RSSI-COV) was proposed in [10]. In this paper the 

RSSI-COV method is applied to extract the time-varying system natural frequencies 

of Guan-Du Bridge. Through the continuous monitoring of the bridge the identified 

system natural frequencies of the bridge caused by abnormality from those caused by 

environmental and operational variations, such as temperature and traffic loading is 

also discussed.  

2. Overview of the Guan-Du Bridge and Instrumentation 

The Guandu Bridge is a steel arch bridge across the Tamsui River, Taiwan, which 

links two counties (Bali and Tamsui) of New Taipei City. It is a five-span continuous 

bridge consisting of two 44m side spans, two 143m and one 165m center spans, and 

its overall length is 539m. The bridge was opened for operation in October 31, 1983. 

The deck has four lanes for vehicles. Unique feature of the bridge design is the arch 

and cable system. Fig. 1 shows the photo of the bridge and the dimension of the 

bridge is also shown in Fig. 2.  

To extract the dynamic features of the bridge in its operating condition, a short term 

continuous monitoring system is installed in this bridge. Twenty uni-axial 

accelerometers (Tokyo Sokushin AS2000) were deployed along the bridge deck (on 

both side of the vehicle lanes) for vibration measurement in its vertical direction. The 

accelerometer has frequency range of DC-250Hz, amplitude range of g2 and with 

sensitivity of 3V/g. Data communication through wireless sensing system is used to 

reduce the cabling issue. The wireless sensing module collected the signal from each 

sensor and broadcasted to PC server (about 2.0 km away) for conducting analysis. 

Measurements are taken from four different time period: First, from 14:00 pm of April 

1st to 14:00 pm of April 2nd of 2011; Second, from 14:00 pm of August 5th to 12:00 

pm of August 6th; Third, from 14:00 pm of January 17 of 2012 to 19:00 pm; Fourth, 

from 12:00 pm of January 19 to 16:30 pm. The      



 

Fig. 1: Photo of Guan-Du Bridge. 

 

   

Fig. 2: Sketch of the bridge which shows the dimension as well as the locations of  
wireless sensing units on two sides of the bridge deck. 

 

length of measurement is arranged to collect 1.0 min. data for every half hour with the 

sampling rate of 200Hz (12,000. point per minute). During the vibration measurement 

the outdoor temperature as well as the mean of the response variance from all sensing 

nodes was also calculated. 

    In this paper the relationship between the identified system natural frequencies 

and the unmeasured environmental and operational variations (traffic loading) 

including the ambient temperature is characterized by Nonlinear Principal Component 

Analysis (NLPCA). 

3. Nonlinear Principal Component Analysis 

The variation of the identified system modal frequencies may due to the influence of 

time-varying environmental and operational condition. Traffic loadings and the 

ambient temperature are also known to alter the measured natural frequencies and 

damping ratios. Therefore, in order to achieve successful novelty detection, it is 

necessary to develop a robust SHM system that can distinguish the effects caused by 

abnormality from those caused by environmental and operational variations. Peeters 

et al. [11] used a black-box model to describe the variations of eigenfrequencies as a 

function of temperature. The damage can be detected if the eignfrequency of the new 

data exceeds certain confidence intervals of the model. H. Sohn et al. employed 

auto-associate neural networks (AANN) to discriminate system changes on structural 

deterioration and damage from effects of the ambient conditions [12]. Yan et al. 

[13,14] proposed the principal component analysis (PCA) to extract the intrinsic 

environmental factors, and then adopted the novelty analysis to decide whether the 

structure is damaged or not. Sohn et al. [15] proposed to train an auto-associative 

neural network (AANN) to perform nonlinear principal component analysis (NLPCA) 

if the environmental effect is highly nonlinear. In this study, a NLPCA (AANN) 

network (with a circular node at the bottleneck), as shown in Fig. 3, which performs 



the NLSSA by nonlinearly combining all the input modes into a single NLSSA mode. 

 
Fig 3: Auto-associate Neural Network 

The input modes for AANN in this study include the identified modal frequency, 

variation of ambient temperature, and the Fourier amplitude induced by traffic loading. 

Procedures to extract the NLPCA are listed as follows: 

1. Data normalization for NLPCA: A matrix is formed from the input modes, 

P Kd
~
 . The component of this matrix will be used as input to auto-associate 

neural network. Normalization with respect to each component of the matrix, iP , 

is required to get the standardized component iP̂ . The normalization is defined 

as:   

     ˆ
L
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where LKp  is the non-normalized value of the L-th component at time Kt  and 

L  is the mean of the row vector iP . Each variable ),,2,1(  ;ˆ lii P , is a time 

series of length K which are the inputs to a feed-forward neural network, mapping 

through a bottleneck to the output 'P̂ . 
2. Extract single mode from NLPCA:  To reconstruct the single mode from AANN, 

the mapping from the bottleneck layer to the decoding layer needs to be done from 

the following equation: 

       ),)ˆtanh(( )ˆ()ˆ()ˆ(
k

ppp
k bh  Pw with   k = 1, … , M.       (2) 

where P̂  is bottleneck node in NLPCA, )ˆ( pw is a weight parameter vectors, and 
)d(b  is the bias parameter. The bottleneck contains two neurons p and q confined 

to lie on a unit circle. 

Finally, the network output is given by 
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Consider the identified time-varying modal frequency and together with the ambient 

temperature and the Fourier amplitude of acceleration response as inputs to the 

AANN. After training from AANN the first NLPCA mode can be constructed.  

4. Covariance-Driven Stochastic Subspace Identification 

The covariance-driven stochastic subspace identification (SSI-COV) is addressing the 

so-called stochastic realization problem, i.e., the problem of identifying a stochastic 

state-space model from output-only data. Assuming a structure under consideration is 

being excited by un-measurable stochastic ambient forces, the discrete time stochastic 

state-space-model is expressed as: 

               kkkkkk xandx vCywAx 1    (4)

where A is the system matrix, C is the output matrix, 12  n
kx  is the state vector and 

1 l
ky is the measurement vector, wk and vk represent the system noise and 

measurement noise respectively. The SSI-COV method stems from the need to solve 

the problem through identifying a stochastic state-space model (matrices A and C) 

from output-only data. The first step is to establish the data Hankel Data matrix and 

then form the block Toeplitz matrix by a multiplication between future and transpose 

of past measurements:  
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(5)

where Yp denotes the past measurements and Yf denotes for the future measurements. 

The block output covariance with time lag i is defined as Ri and has the following 

factorization properties: 
GCAyyR 1iT

ikki ][E 
                (6) 

where G is the next-step state and output covariance matrix ][ 1
T
kkE yx G . The 

Toeplitz matrix can be factorized into the extended observability matrix nli
i

2O  

and the reversed extended stochastic controllability matrix  lin
i

 2Γ , as shown 

below: 
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Singular Value Decomposition (SVD) is used to perform the above mentioned 

factorization:  
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where 
liliU  and 

liliV are orthonormal matrices, and S is a diagonal matrix 

containing positive singular values in descending order. Comparing Eq. (7) and Eq. 

(8), the matrix Oi which contains the system matrices (A and C) can be computed by 

splitting the SVD in two parts: 
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From Oi matrix, the system matrices (A and C) can be obtained easily. In MATLAB 
notation, the C matrix is just the first block of Oi, i.e. :),:1( lOC i . Then system 

matrix A can be computed by exploiting the shift structure of the extended 

observability matrix Oi: 
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where  
 denotes pseudo-inverse. The system matrix A is extracted by taking 

advantage of the shift structure of matrix Oi, and the pseudo-inverse of Oi is to 

determine the system matrix A in a least square sense. The modal frequencies and 

effective damping ratios can be computed by conducting eigenvalue decomposition of 

the system matrix A, and the corresponding eigenvectors multiplied by the output 

matrix C are used to observe mode shapes.  

   The actual implementation of SSI-COV consists of estimating the covariance R, 

computing the SVD of T1/i, truncate the SVD to the model order n, estimating Oi and 

i by splitting the SVD in two parts and finally estimating A, C, G from Oi and i. 

However, to obtain a good model for modal order analysis applications, it is probably 

a better idea to construct a stabilization diagram, by indentifying a whole set of 

models with different order. 

5. Recursive Stochastic Subspace Identification 

The above-mentioned SSI techniques process measured data in one batch hence 

cannot be used for on-line health monitoring and damage detection. Therefore, for 

on-line tracking of time-varying structural modal parameters a recursive subspace 

method needs to be developed. Instead of arranging the block covariance in the form 

of so-called Toeplitz matrix, the form of a Hankel Covariance matrix must be adopted 

which can be constructed by arranging the output measurement data vectors as 
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where 1 l
ky is the output measurement vector. 1  il

ky  and ilT

k
  1y . l is the 

number of sensors and i is number of block rows. A Hankel covariance matrix, COV
NH , 

is defined:  
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where k is ranging over the entire set of available data, and the order of the Hankel 

Covariance matrix is “i” with data length N. The need of a recursive fashion to update 

SVD is required. A new approach called Projection Approximation Subspace Tracking 

(PAST) was initially developed by Bin Yang [16], which takes the advantage of a 

mathematical lemma to find the required column subspace as an unconstrained 

optimization problem. Later the algorithm is modified to its Extended Instrumental 

Variable version (EIV-PAST) by Gustafsson [17], which is a suitable algorithm for the 

structure of SSI-COV.  

   To derive the RSSI, the Extended Instrument Variable technique is used. The 

cost function to be minimized can be replaced by its corresponding EIV formulation: 
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where      kkk H zh 1 W  and the subscript F denotes the Frobenius norm defined 

as  Htr σσ . The least square solution of Eq.13 is readily found to be: 
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W is a matrix with suitable dimension and has orthogonal columns containing any “r” 

distinct eigenvectors and the RLS algorithm can be easily derived for updating W(t). 

By substituting the random vector z(t) and the instrument  tξ  by the corresponding 

data vector in Eq.11, the objective function of EIV-PAST to be minimized will 



become: 
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Similar to Eq.14 the least square solution of Eq.15 can be obtained as follows: 
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Therefore, the column subspace U can also be obtained from the 

Eigen-Decomposition (ED) of the Hankel Covariance matrix multiplied by its 

transpose (the covariance of the Hankel Covariance matrix). 

Application of EIV-PAST to RSSI-COV    In SSI-COV algorithm the SVD of a 

Hankel Covariance matrix is defined as: 
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where U and V are orthonormal matrices, S is a diagonal matrix containing the 

singular values. Since the Hankel Covariance matrix multiplied by its transpose can 

also be expressed as:  

    1covcov  USSUUSSUUVSUSVHH TTTTTTT

   (18) 

From the procedure of SSI-COV the desired system observability matrix Oi can be 

obtained by extracting the column subspace U1 from Hankel Covariance matrix using 

SVD. However, after solving Eq.17 by least square, the obtained dominant 

eigenvector    tt IVUW   is actually the dominant eigenvectors of the Hankel 

ovariance matrix instead of the desired column subspace. This latter must be 

computed via ED of the “Covariance matrix of the Hankel Covariance matrix” as 

shown in Eq.17. Hence, the Extended Instrumental Variable Recursive Least Square 

(EIV-RLS) algorithm can be applied to solve the EIV-PAST problem, which fulfills the 

SVD-updating requirement of RSSI-COV to track the time-varying subspace U1(t). 

To develop the adaptive Hankel covariance matrix for RSSI-COV, a new 

incoming data point N+1 will be added to the exsisting Hankel covariance matrix and 

converted into a new rank-one matrix. The sliding window technique will be used to 

formulate the adaptive Hankel matrix for RSSI-COV, although this requires more 

computations, but it offers a faster tracking response to sudden signal changes [16]. 

The sliding window technique requires 2 steps calculation for each incoming new data: 

First, the oldest data is removed from the window (down-dating); and second, a new 

data is incorporated (up-dating). Let the window length remains to be L, and then the 

adaptive Hankel matrix is expressed as: 
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The use of moving window technique implies the EIV-RLS algorithm has to be done 

twice to complete the subspace updating: after adding the new incoming data 

(up-dating) the oldest data from the moving window must be discarded (down-dating). 

Once the time-varying column subspace U1(t) is estimated, the system information can 

then be extracted. 

6. Monitoring Results of the Guan-Du Bridge 

The proposed RSSI-COV method that incorporated with NLPCA is applied to the 

field data collected from the Guan-Du Bridge to investigate its ability to detect 

abnormality in the presence of environmental and operational variations. Before 

conduct the RSSI-COV to extract the system natural frequencies, first, the offline 

SSI-COV is applied to identify the dominant frequencies of the bridge as well as the 

mode shapes of the bridge.  

Stabilization Diagram and system identification   As the system order is often 

unknown, a common practice on operational modal analysis is to calculate the modal 

parameters for increasing  

 
Fig. 4 Stability diagram from SSI-COV with system order of 492.  

Table 1: Estimated natural frequencies and damping ratios 

 

model order “n”. If n is higher than the true system order, the noise is modeled, but 

the mathematical poles that raise in this way are different from for different model 

orders if the noise is purely white. So the true physical system poles can be detected 

by comparing the modal parameters for different modal orders. The detection can be 

performed in a stabilization diagram. In this study a total of 20 sensors are used. Since 



the original data sampling rate is 200 Hz, to reduce the computation time as well as 

the dimension of the Hankel matrix, down-sampling to 50 Hz by using the 

Butterworth IIR filter of order 10 is used.  The dimension of Toeplitz matrix is 

(30003000) in which i=150 and j=2701. Fig. 4 shows the stabilization diagram 

obtained from SSI-OV method. For such a bridge, its dominant frequencies of interest 

lie in the range of 0-5 Hz. The estimated natural frequencies and damping ratios by 

the proposed method and the SSI technique are given in Table 1. A typical 

stabilization diagram is implemented by comparing the poles obtained between two 

consecutive matrix order from lowest to highest, then apply stabilization criteria to 

modal frequencies, damping ratios and mode shapes, to discriminate if a pole is stable 

or not. The chosen stability criteria are referenced from [9] and are defined as follows: 

Modal frequency: %%)f/)ff(( )()i()i( 110011   

           Modal damping ratio:   %%/)( )i()i()i( 51001  
         

(20) 

       Mode shape:    %31001,1  %iiMAC  

where i is the number of block rows of the Hankel matrix, which determines the 

Toeplitz or projection matrix order, and MAC is the Modal Assurance Criterion, which 

is defined as the squared correlation between two mode shape vectors:
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where the subscript H denotes Hermitian transpose, v is the given mode shape vector, 

and MAC is a scalar between zero and unity. Generally, the system poles are more 

stable in terms of its modal frequency as the matrix order is increased, followed by 

mode shape, and damping ratio is the most unstable quantity. Fig. 5 shows the 

identified mode shapes (for frequencies lower than 3.0 Hz). It is important to point out 

that both symmetric and anti-symmetric modes can be identified. As shown in Fig. 6, 

the identified mode shapes for f=1.56 Hz versus f=2.57 Hz, f=1.65 Hz versus f=2.77 

Hz, and f=1.78 Hz versus f=2.89 Hz are symmetric versus anti-symmetric mode, 

respectively.  

Quantification of Vibration Amplitude   Since the response measurement of the 

bridge is mainly caused by traffic-induced vibration, it is necessary to quantify the 

bridge vibration amplitude so as to achieve successful novelty detection. To quantify 

the bridge vibration amplitude during a specific time window caused by 

environmental and operational variation, a systematic way of extracting  

vibration amplitude needs to be established. Consider a specific time window of 

analysis in which the Fourier amplitude spectrum from each measurement is 

calculated. The frequency band of the spectrum needs to cover all dominant 

frequencies that were identified from SSI-COV. It is defined: 

}]ˆ{}ˆ{}ˆ[{ nfff 21F                       (22) 

 



 

 

where n is the number of sensors and }ˆ
if{  is a vector which listed all the Fourier 

amplitude spectrum from response measurement at sensor node “i”. Principal 

component analysis (PCA) is used through singular value decomposition to extract 

the principal component of the response Fourier amplitude:                  

T
n }]ˆ{}ˆ{}ˆ[{ VSUF  fff 21                 (23) 

The first principal component, is a function of frequency, can be extracted. The 

amplitude from the 1st PCA can be used as the quantification of the vibration 

amplitude.   

Application of RSSI-COV method     Application of the proposed recursive 

stochastic subspace identification scheme to the response measurement of Guan-Du 

Bridge, the time-varying system natural frequencies can be identified. The time 

window for recursive identification is 45 sec. and moving with 5.0 sec interval. The 

identification scheme is shown in Fig. 7, and the related model parameters for RSSI 

are also indicated in this flowchart. It is important to point out that data 

pre-processing is important in order to have a better results of identification and can 

reduce the computation time. Fig. 8 only plots the identified time-varying system 

natural frequencies at 1.56 Hz (symmetric mode) and 2.57 Hz (anti-symmetric mode) 

from five different time period of measurement. The two identified frequencies in this 



figure will have the same mode shape with MAC higher than 60%. Other system 

natural frequencies can also have the same results. It is observed that the 

time-variation of the identified system natural frequencies do exist. 

 
Nonlinear Principal Component Analysis    To distinguish the change of system 

natural frequency caused by abnormality from those caused by environmental and 

operational variation the nonlinear principal component analysis is applied. Based on 

the above mentioned AANN method, the relationship (nonlinear principal component) 

among the identified system natural frequency (f=1.554 Hz), ambient temperature and 

Fourier amplitude of response at specify system frequency is investigated. Fig. 9a 

plots the 3-D relationship between the normalized three physical parameters. The 

extracting principal component from the data is also shown in this figure. To plot the 

2-D relationship Fig. 9b shows the relationship between the normalized system 

natural frequency and the ambient temperature. It is observed that the system natural 

frequency decreases with the increasing ambient temperature. Same analysis can also 

be applied to different system natural frequency. 

 



 

7. Conclusions 

This paper presented the on-line system parameter estimation technique from the 

response measurements through Recursive Covariance-driven Stochastic Subspace 

identification (RSSI-COV) approach. To avoid excessive time-consumption in 

Singular Value Decomposition, Extended Instrumental Variable Projection 

Approximation Subspace Tracking algorithm (EIV-PAST) is used for this study. With 

the proposed method a bridge structure monitoring system is developed. Through the 

output-only response measurement a Stochastic Subspace Identification (SSI) is 

carried out to extract the dynamic characteristics of the bridge under its operating 

condition. To distinguish the abnormality of the identified system natural frequencies 

from those caused by environmental and operational variation, the time-varying 

modal parameters using recursive SSI-COV algorithm was developed. The accuracy 

and robustness offered by RSSI-COV can extract the key feature directly from the 

response measurement to obtain the evidences of system changes and provides a very 

stable modal frequency tracking. In this study, the nonlinear principal component 

analysis is employed to extract the nonlinear relationship between system natural 

frequencies, ambient temperature and amplitude of external traffic loadings. Through 

this study the following conclusions are drawn: 

1. Pre-processing of the measurement can provide accurate result from using SSI, 

and can also speed up the calculation. For recursive stochastic subspace 

identification, it is necessary to develop a new filtering algorithm to 

down-sampling the data.  

2. Application of RSSI-COV to identify the system dynamic characteristics, it is 

important to select suitable model parameters for stochastic subspace 

identification. These parameters include: the length of moving time window, the 

number of order for Hankel matrix, and Percentage of Singular Values (CSVD) 

needs to be considered   

3. Incorporated with ANN the Nonlinear PCA technique is employed to extract the 



nonlinear relationship among the identified system natural frequency, ambient 

temperature and the vibration amplitude of the measurements.  
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Part 2:  

Develop On-Line Damage Detection Methods of Bridge  

Under Abnormal Conditions 

 

ABSTRACT 

The objective of this paper is to discuss two different approaches on structural 

damage detection: one is the vibration-based damage detection and the other is the 

model-based damage detection. The vibration-based damage detection method is 

based on the extracted sub-space or null-space from the singular value decomposition 

(SVD) of analytic matrix formed from data Hankel matrix. Damage detection 

algorithm is then developed by considering the orthonormality between the subspace 

and null-space. To form the analytic matrix three different algorithms can be used: 

from the trajectory matrix in Singular Spectrum Analysis (SSA), from Toeplitz matrix 

in SSI-COV, or from QR decomposition of data Hankel matrix in SSI-DATA. The 

model-based damage detection is using the AR-ARX model to identify the model 

coefficients from which the damage sensitivity factor can be generated. Discussion 

among these damage detection methods was made through the response data collected 

from the shaking table test of a 6-stry steel frame with different damage scenarios and 

the scouring test of bridge model in hydraulic lab during scouring process.   

 

1. INTRODUCTION 

Continuous vibration monitoring provides a valuable tool to complement other 

nondestructive evaluation methods. It directly addresses the performance of the 

structural condition under service loading. Damage identification based upon changes 

in dynamic response is one of the few methods that monitoring changes in the 



structure on a global basis. The premise of vibration-based damage detection 

approach is that the damages will significantly alter the dynamic response, due to 

changes in structural dynamic characteristics or the structural boundary conditions. To 

achieve this damage detection goal, techniques on structural health monitoring need to 

be developed. The structural health monitoring process involves the monitoring of a 

structure over time, the periodically collection of response measurement from an array 

of sensors, the extraction of damage sensitive features through analyzing the data, and 

determine the current state of the health. Early damage detection and eventual 

estimation of damage is an important problem, since it forms the basis of any decision 

for structural repair and/or part replacement.   

There are several damage detection methods without using input information. 

The results include different experimental techniques, methodologies and signal 

processing methods, as indicated by Doebling et al. in 1996 and Staszewski in 1996 

[1,2]. Most damage detection methods use a relationship between a structure 

condition and a diagnostic symptom indicating damage. The emergency of damage 

can be indicated by a change of these symptoms. However, due to the complexity of 

engineering structures, it is difficult to observe small changes of symptoms which can 

lead to early damage detection. Therefore, different signal processing methods are 

used to obtain features for damage symptoms. It appears that in practice that signal 

processing is a crucial element in the implementation and operation of any damage 

detection system. 

Considering vibration-based signal processing and feature extraction, singular 

value decomposition (SVD) has been widely used in many different system 

identification and damage detection methods. Many publications start to apply SVD 

to detect structural damage. Ruotolo and Surace [3] investigated SVD for damage 

detection by comparing current sensor data to a subspace spanned by measurements 

taken from the healthy structure with varying operational and environmental 

conditions. Yan and Golinval performed SVD to obtain characteristic subspace from 

measurements [4]. It was demonstrated that the structural features are mainly located 

in the active subspace, which is orthonormal to the null subspace. If damage occurs 

the orthonormality relation between two subspaces will be broken. In relating to SVD 

singular spectrum analysis (SSA) has been used as an alternative to traditional digital 

filtering method. SSA procedure mainly involves two stages: decomposition and 

reconstruction. It takes singular value decomposition of Hankel matrix embedded by 

analyzed time series and decomposes it into several simple, independent and 

identifiable components. It is a novel technique of time series analysis and signal 

feature extraction. The development of SSA is associated with publication of several 

papers by Broomhead et al. [5,6] and Bosso et al. [7]. The basic capabilities of SSA 

include finding trend, extracting periodic component, smoothing time series and 

de-noising of time series which can be used for damage detection. 

Time-series analysis based on the use of autoregressive (AR) model has also 



been extensively used in the SHM process as a feature extraction and damage 

detection technique by Sohn & Farrar [8]. This technique is typically applied to 

experimentally measured time-series data where future data values are predicted from 

past values. The residual errors have had considerable applications as 

damage-sensitive features. Furthermore, in addition to the widely used residual errors, 

the estimated AR coefficients are also directly used as damage-sensitive features. The 

AR model coefficients are used to define the feature vector which serves as the 

diagnostic tool for damage identification had been developed by Nair, et al. [9] and 

Nair and Kiremidjian [10]. This approach intends to extract features capable of being 

sensitive to the effects caused by damage and insensitive to the effects due to 

operational and environmental variations.  

 The application of system identification to vibrating structures yields a research 

domain in civil engineering, known as experimental modal analysis (EMA). In this 

paper two different types of system identification and feature extraction techniques 

are discussed for generating the damage indices for damage detection. The first one is 

the subspace-based damage detection by using singular value decomposition of data 

Hankel matrix or analysis matrix (i.e. using null-space and subspace-based damage 

detection); the second one is using the time-dependent ARX model and generate 

damage sensitive features for damage detection (i.e. using autoregressive (AR) model 

coefficients or using residual error of two-tier AR-ARX model). Methodologies from 

these two techniques, which include five different definitions of damage indices, are 

introduced and briefly summarized. The performances of these five damage indices 

are investigated through comparative study of using response measurement from 

scenario damage of a steel frame subject to white noise excitation and the bridge 

scouring test in large hydraulic laboratory. 

 

2. REVISITS TO DAMAGE IDENTIFICATION METHODS 

2.1. Null Subspace-based Damage Detection 

Considering two matrices, X0 and X refer to the analysis matrices represented by 

the data from health (reference) system and monitor (target) system, respectively. The 

results from singular value decomposition of these two matrices are expressed as: 
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where Us (or Uso) and Vs (or Vso) are subspaces of matrix X spanned by left singular 

vectors and right singular vectors corresponding to non-zero singular values 

respectively; Un (or Uno) and Vn (or Vno) are null-spaces of matrix X spanned by left 



singular vectors and right singular vectors corresponding to zero singular values 

respectively. The subspaces and null-spaces of matrices X0 and X satisfy the 

orthogonal property. If the target system is undamaged, the subspace of the matrix X 

will be approximately equal to the subspace of the matrix X0 of the reference system. 

Therefore, one approach to detect the damage between the target and the reference 

systems is by checking the orthogonal property between the null-space of the health 

(reference) system and the sub-space of the healthy system: 

0UU T
n0s   or 0VV T

n0s    if monitor system is undamaged 

0UU T
n0s   or 0VV T

n0s    if monitor system is damage 

For computation simplicity, consider only the subspace and null-space spanned by left 

singular vector. The damaged indicator, DIn, based on the null-space of the matrix X0 

can be defined as the absolute mean value of the matrix evaluated from subspace and 

null-space: 
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where mean{} evaluates the mean value of all elements of matrix in {} and |•| makes 

all elements of matrix positive. The value of DIn ranges from 0 to 1.  

Different from the damage index shown in Eq. (3), the subspaces of matrix x0 

and x also satisfied the following orthogonal properties: 
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Using Eq. (4), the difference between two subspaces can be used to evaluate the 

projection of the column vector of the matrix X (target) on the subspace of the matrix 

X0 (reference state) as: 
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After normalization with respect to the norm of matrix X,  the damage indicator DIs 

can be defined as: 
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The denominator of Eq.(6) is used to normalize the damage index DIs so as to have 

DIs in the range between 0 and 1. 

   To create an analysis matrix for SVD to develop damage index, three different 



definitions on the analysis matrix can be defined. First one, consider the process on 

Data-driven Stochastic Subspace Identification algorithm (SSI-DATA). The first step 

of SSI-DATA is the LQ decomposition of the data Hankel matrix, as shown: 
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      (7) 
and then takes the singular value decomposition of the element matrix L21 of lower 

triangular matrix to obtain the observability matrix O. The analysis matrix X for 

damage detection can be defined as: 

                              
T
2121LLX                            (8) 

To identify a suitable system order for SSI-DATA so as to separate the significant 

singular values from the noise (or null-space), the system model order “n” can be 

determined from the selected number of singular spectrum in conducting the SV 

based on the proposed CSVD value which is defined as: 
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                       (9) 

where si is the value of singular spectrum and N is the total number of singular values 

along the diagonal of matrix [S] in SVD and with (n<N). 

   The second one to define the analysis matrix for defining the damage index is 

using the Covariance-Driven Stochastic Subspace Identification (SSI-COV). The 

analysis matrix X can directly be defined from the Toeplitz matrix (T) in SSI-COV: 

                           
T
pf YYTX 

                         (10) 

The system order for SSI-COV, Eq. (9) can also be applied.  

   The third one to define the analysis matrix is directly using the data Hankel matrix 

(trajectory matrix), and define the analysis matrix X as: 

                              
TYYX                             (11) 

Based on the proposed three different analysis matrices, either null-space based 

damage index or subspace-based damage index can be calculated. 

2.2 Damage Detection using Coupling of Singular Values from SSA 

Singular spectrum analysis (SSA) is a novel technique and has proven to be a 

powerful tool for time data series analysis. It takes the singular value decomposition 

of data Hankel matrix embedded by the analyzed time data series and decomposes the 

data to several simple, independent and identifiable components. Basic capability of 

SSA includes finding trend, extracting periodic component, smoothing time series and 

de-noising of time series [11,12]. The basic procedure of SSA consists of four steps: 



embedding, singular value decomposition, grouping and diagonal averaging. In the 

first step (embedding), the one dimensional time series is recast as an L-dimensional 

time series (trajectory matrix, same as Eq.(7). In the second step (singular value 

decomposition), the trajectory matrix is decomposed into a sum of orthogonal 

matrices of rank one: 

                             
TVSUY                           (12) 

where U and V are orthogonal matrices and S is a diagonal real matrix such that its 

elements ( m.   321 ) are the singular values of the trajectory matrix Y. 

It is noted that the singular values of Y are the square root of the eigenvalues of C 

(C=YT Y). These two steps constitute the decomposition stage of SSA. In the third 

and fourth steps, the components are grouped and the time series associated with the 

groups are reconstructed. The aim of this stage is to separate the additive components 

of the time series. It can be seen as separating the time series into two groups: the 

“signal” and the “noisy” components, which are by definition the components that are 

not interested in. 

In SSA, if a periodic mode is encountered, each of which will be spitted into a pair 

of modes with high “degree of coupling”, otherwise, the coupling effect is reduced. 

Here the “degree of coupling” is defined as: 

                    n,,,k/ kkk 21212                      (13)  

where σi is the ith singular value in singular spectrum analysis. If k  parameters 

show an anomalous decreasing behavior the periodic mode collapse and the fact 

associated with different types of structural modes. Then, the loss of degree of 

coupling can be used of damage detection. In this study the coupling level between 1st 

and 2nd singular values in SSA are used for discussion because these two singular 

values represent most significant principal component in the analyzed time series. It is 

now defined the difference of the first two largest eigen values as one of the damage 

index (or Eigenvalue Difference Ratio, EDR): 
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If the difference between the 1st and 2nd singular value is small which indicates the 

principal component do exists in the analysis data. If the difference between the 1st 

and 2nd singular value is large different type of principal component has occurred. If 

the damage of a structural system can alter the dominant principal components, then 

high value of “DI1” may detect this change. It is important to note that in SSA the 

distribution of singular spectrum can also reflect the feature of signal; therefore, it can 

also be used as a measure of structural damage characteristics. The variation of 

singular spectrum can be defined as: 

                        ),(MACDI 02 1 SS                      (15) 



where S0 is the distribution of singular spectrum from reference state (undamaged 

case) and S is the distribution of singular spectrum from analyzed state (damaged 

case), and MAC is defined as 
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          (16) 

Larger MAC value indicates the difference on the distribution of singular spectrum 

between reference state and analysis state is almost the same which means almost no 

damage between these two states. 

   The SSA reconstruction process can also be used for damage detection. Since the 

first two singular spectra values can represent a harmonic wave if the degree of 

coupling is strong enough, besides, it also represents the major principal component 

of the structural response. Therefore, the reconstruction process by using the first two 

largest eigenvalues from each time window can provide information on the change of 

principal component of the structural response. This change can be used for damage 

detection. Comparison on the root-mean-square value between the reconstructed data 

from the reference data and from the different moving time window, damage 

assessment can be performed.           

2.3 Damage Detection using AR-ARX model 

Different from using vibration measurement directly for damage detection, a 

model-based damage detection technique is also examined. Approaches based upon 

the statistical pattern recognition paradigm proposed by Sohn et al. [8] and extended 

by Lynch et al. [13] for on-line damage detection is discussed first. A two-stage 

prediction model, combining Auto-Regressive (AR) and Auto-Regressive with 

eXogeneous input (ARX) techniques, is constructed from the selected reference 

measurement as the undamaged model. The procedure is briefly described below: 

a. Construct an AR model with p auto-regressive terms from a reference segment 

data y(t): 
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            (17) 

where i  is the i-th AR coefficient,  p is the order of the AR model. It is important 

to identify the suitable model order for the AR model. m
ARr  is the residual error and m 

indicates m-th time series. “m”sets of response data has to be collected, and a set of 

reference AR coefficients can be obtained for the structure. Based on these identified 

AR models, one can select a suitable one as a reference model. It is important to 

identify the suitable model order for the AR model. 

b. With the selected “n-th” data set, the residual error, n
ARr  will be used as the 

background (or environmental signal) noise. Therefore, with this selected reference 

data set, an ARX model is employed to reconstruct the input/output relationship 

between n
ARr  and )t(yn : 
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where α and β are the coefficients of the ARX model, and a and b are the order of 

the ARX 

model. The final residual error of the ARX model, n
ARX , is defined as the damage 

sensitive feature of the structure. An extensive library of AR-ARX models, all of the 

same model size, corresponding to the undamaged structure is generated by exciting 

the structure with different levels of ambient excitation. One set of the ARX model 

coefficients and the standard deviation 

of n
ARX  for the reference AR-ARX model will be used as the undamaged reference. 

c. For the structure in an unknown state, a new set of ambient vibration data of the 

structure is measured. An investigation is made to determine how well the reference 

ARX(a,b) model can reproduce the input/output relationship of the residual error and 

the measurement )t(y~ : 
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         (19)
 

Note that the i  and j  coefficients are associated with the reference model. 

d. Finally, the standard deviation of the ARX model residual error,  y~ , using 

the newly measured data is determined. The estimated standard deviations of )t(y~  

and )t(n
ARX  is then calculated and is defined as the damage sensitive feature. If the 

ratio of   )(/ n
ARXy~    becomes larger than some threshold value h(>1), then the 

system is considered to have undergoes some structural system changes. This 

algorithm can be applied for on-line damage detection. 

2.4 Damage Detection Using Damage Sensitivity Factor 

    Since damage detection can be demostrated through the analysis of measurement 

directly from response vibration signals of a structure before and after damage, 

therefore, either single-variant or multivariate auto-regressive (AR) time series can be 

used to model the vibration data obtained from the sensor. In general, the AR 

coefficients provide information about the system natural frequencies and the 

damping ratios. Consider the single-input and single-output (SISO) case as shown in 

Eq.(17), the method of least square can be applied to estimate model parameters. Nair 

et al. [14] reported that the Damage Sensitivity Factor (DSF) depending on the AR 

coefficients is the most promising because these coefficients are statistically the most 

significant among all the coefficients of model for damage detection. The DSF is 

defined as:  
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Different from the SISO AR model, to determine the multivariate AR coefficients, the 

multivariate AR model is considered: 
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(i=1:p) is the output vector with delay time i×Ts, T is the sampling period (s), and 
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 is the residual vector of all output channels, and considered as the error of 

the model.  

If (N ≥ dp+d) consecutive output vectors of the responses from  ( )y k  to 

 ( 1)y k N  are taken into account, the model parameters can obviously be 

estimated with the least squares method by minimizing a norm of error sequences. 

The data matrix is first constructed from N successive samples [15,16]: 
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The QR factorization of the data matrix      ( ) ( )N dp d N N N dp d
K Q R

    
 can be 

computed by using the Householder method [17] or Givens rotation [18]. It gives 

 N N
Q


which is an orthogonal matrix  . TQQ I  and   ( )N dp d

R
  which is an upper 



triangular matrix with the form:  
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The QR factorization of the data matrix K leads to the Cholesky factorization 
T TK K R R    
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The model parameters matrix  d dp
A


is calculated from the Cholesky factorization: 
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and the estimated covariance matrices of the unnoised part   ddD  and of the error 

part   ddE   can be estimated via the computation of the QR factorization as 

follows[19]: 

                               1212 RRD T
dd                         (26) 

     2222 RRE T
dd   

Once the model parameters are estimated, the state matrix of the system can be 

established in the form of autoregressive parameters [20]: 
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where the poles of the model are also the root of the characteristic polynomial of the 

state matrix.  

Since the model is updated with respect to its system order, it is appropriate to use 

stabilization diagrams to identify the stable system natural frequencies. By observing 

the stability of the identified frequencies with respect to increasing model order, it is 

possible to distinguish the physical modes from the spurious modes. 

 

3. EXPERIMENTAL SETUP FOR DAMAGE DETECTION 

To discuss the above mentioned damage detection algorithms the failure of bridge 

structure during scouring process is examined. In this example an experimental testing 

on a bridge model subjected to scouring test. A four span bridge model with simply 



supported girder on each pier was constructed to across a flume of width 4.5 meter in 

the hydraulic lab. The span length is about 1.0 m. The sketch and the dimension of 

this bridge are shown in Figure 1. The bridge piers are embedded in sand with depth 

of 30 cm. 12 velocity sensors are deployed along the bridge deck to collect the 

vibration signal of the bridge during scouring process in transverse direction (along 

stream line). The scouring test runs for about 3 hours. To focus the major scouring 

phenomenon on one single bridge pier, the major running stream water was guided 

and focuses the scouring effect mainly on the 3rd pier between sensor number 9 and 

10. Photos of the bridge test setup and the scouring test are shown in Figure 2. 

Velocity response data of the bridge during scouring process are collected. The 

VSE-15D sensor is used and it is a servo velocity meter produced by Tokyo Sokushin 

Co., Ltd. This sensor is very sensitive to detect the low level vibration motion and the 

linear range (0.2Hz~70Hz) is suite for SHM applications. Data acquisition system 

collected all the velocity response of the bridge from all twelve sensors with sampling 

rate of 200 Hz. Figures 3a and 3b show the collected velocity response from sensor 

node #2 and node #9. The total run time on this bridge scouring test is 200 min. 

(12,000 sec). The response data from all sensing nodes (12 sensors) can be used for 

on-line monitoring of the bridge structure. As shown in Figure 3, at pier 3 the laying 

depth (embedment depth of sand, i.e. 30 cm) significantly reduced at the beginning of 

the incoming water as compare to the other piers. From the observation of the 

recorded time data, at t=5800 sec and t=7500 sec there are two significant changes of 

vibration measurement were observed from sensor node No.9. This abnormal 

response data is due to the settlement of pier No.3. 
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Figure 1: Sketch and dimension of the model bridge for testing.  
      The locations of sensors on the deck are also shown.  

 

3.1 Results using null subspace-based damage identification  

Three different analytic matrices were introduced in section 2 which can be used 

to calculate the damage indices: SSA-based, SSI-DATA based and SSI-COV based. 

 



                                     (a) 

 

                  (b)                                  (c) 

   
    

Figure 2: Photos of the bridge scouring test in the hydraulic laboratory; 
(a) test setup, (b) during the scouring test, (c) after the scouring test. 
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Figure 3: Velocity response from sensing nodes 2 and 9. 

Damage Identification from bridge scouring test    Before conducting the 

damage assessment, in order to have a better understanding on the bridge behavior 

during scouring, a multivariate recursive data-driven stochastic subspace 

identification technique (RSSI-DATA) is used to identify time-varying system natural 

frequencies of the bridge [21]. Figure 4 shows the time-varying system natural 



frequencies of the bridge system. It is clearly observed that the change of system 

natural frequencies is more focus on some fundamental modes and is in consistent 

with the abnormal change of response measurement. The identified time-varying 

system natural frequencies will be served as the reference to compare with the 

extracted damage features by using the proposed damage detection methods.     

 
   Figure 4a: Plot the comparison between the identified time-varying system natural 

frequencies (using SSI-DATA method) and the recorded response (from 
sensor node 9) of the bridge during scouring process.    
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(a) Identified time-varying system natural frequencies with Csvd=0.9999 
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Figure 4b: System identification result of scouring test data with different Csvd  

(SSI-DATA algorithm using data from all 12 sensors) 



In this case study, L=100 is used in data Hankel matrix and select CSVD=0.99 to 

calculate DIN and DIS by using SSI-DATA based algorithm. Through moving window 

technique, Figure 5 shows the estimated time-varying damaged indices (DIN and DIS) 

by using response data from sensors on different deck. It is observed that no matter 

which data set was used, both indices can identify the damage situation. The 

estimated damage indices from data set on deck 3 and on deck 4 show larger damage 

indices than other set of data because the significant damage of pier 3 can influence 

sensing data on both deck 3 and deck 4. The result is inconsistent with the identified 

time-varying system natural frequencies. 
    (a) 
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                                        (b) 
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 Figure 5: Estimated time-varying damage indices from different set of sensing 

data; (a) Null space damage index, (b) Subspace- based damage index. 
 

3.2 Results using degree of coupling from SSA 

Damage Identification from bridge scouring test    Different from the damage 

scenario of the 6-story steel frame, the damage identification of bridge scouring will 

focus on low frequency damage. With the concept of moving window (window 

length=40 sec) the data Hankel matrix was formed from each time window by using 

either from individual sensing node or from all recorded sensing nodes. Figures 6a 

and 6b show the difference between the first two largest eigenvalues by using data 

from single measurement (sensing node 2 and node 9, respectively). Larger difference 

indicates poor degree of coupling. This two figures show that prior to the significant 

settlement of the bridge pier No.3 after t=7800 sec, the distinct feature of the 

difference between two largest eigenvalues can be identified at about t=5800 sec. This 

feature can be served as an index for early warning. The difference on the first two 



largest eigenvalues can also be calculate from all set of measurements instead of using 

data from a single sensing node, as shown in Figure 6c (plot in log scale). The result 

is even more promising for early warning.  
(a) 

 

       
 (b) 

 

 
                               (c) 

 
Figure 6: Difference between the 1st and 2nd eigenvalue-ratio from Singular Spectrum 

Analysis, (a) using single measurement from sensing node 2, (b) using single 
measurement from sensing node 9,(c) using all set of measurements. 

     

In cooperated with moving window technique (each window with 40 sec), the 

reconstruction process of signal by using only the first two largest eigenvalues from 

SSA can be generated. Conduct this process in each moving time window. Then by 

selecting the original reconstructed signal as reference (or undamaged case), and 

comparison on the root-mean-square (RMS) value between the original signal and the 

newly reconstructed signal (through moving window technique) can be made. The 



RMS error between the reconstructed and original recorded signal (the first time 

window) is plotted and shown in Figures 7a and 7b. It is observed that the RMS error 

of the sensor signal from different sensing nodes shows a significant change at around 

t=5800 sec before the large settlement occurred. Besides, if the selected sensing node 

is more close to the damage location, larger RMS value can be observed. As shown in 

Figure7b the RMS value from sensing node 10 shows the largest. This information 

can also be used as an index for damage detection as well as provides an early 

warning message. 
                                    (a) 

 

 
(b) 

 
 

Figure 7: Plot of RMS error between the measurement and the prediction using the 
reconstruction signal (from the two largest eigenvalues) of SSA; (a) From 
sensing nodes 1,2,3, and 4; (b) from sensing nodes 10, 11 and 12.   

 

3.3 Results from using AR model for damage detection 

Damage Identification from bridge scouring test    Estimation of DSF value 

from the bridge scouring test data can be applied by using either single-variate or 

multivariate AR model. The order of 40 is selected for using the single-variate AR 

model. With the consideration of system damping ratio less than 10% to select the 

system poles, Figure 8a shows the time-varying DSF value. Although the computation 

still contains spurious modes (with order of 40), the results are noticeable to indicate 

the significant change at t=95 min. and t=125 min. The analysis of using multivariate 

AR model is also applied. The order of multivariate AR model is set to 8 (using data 

from all sensing nodes) and every mode with damping ratio less than 20 % is 



considered to calculate the DSF, as shown in Figure 8b. The change of DSF at t=95 

min. shown in this figure is even more clear to be identified than using only 

singlevariate AR model.    
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      Figure 8: (a) Damage sensitive feature using data from sensor 9 using AR 

model of order 40 and damping ratio below 10%  
          (b) Damage sensitive feature using data from all sensors using AR 

model of order 8 and damping ratio below 20%  
 

For the distributed sensing system on long extended structure, such as 

monitoring the bridge vibration, the two-tier AR-ARX model can also be used for 

damage detection. A reference database corresponding to the undamaged structure 

needs to be defined. It is assumed the initial 80 min. sequences of data (each with time 

window of 40 seconds), from the recorded response are selected as the undamaged 

(reference) data. Once the reference database is established, an AR-ARX model pair 

is fitted using the response data. Following the procedures discussed in the previous 

section, with the new appending data the ratio of AR-ARX two-tier model residual 

errors can be generated for each moving time window. The difference on the residual 

error is attributed to the difference between the current state of measurement to the 

reference state. As shown in Figure 9, the residual error starts to increase at t=80 min. 

and then follows at t=95 min. and 125 min. The increase of residual error at these 

three different specific times is in consistent with the time when the change of 

dynamic characteristics of the bridge structure occurred. Using data from different 

sensing node (i.e. Node 10, Node 11, or Node 12) to calculate the residual error can 

also get the same result. 

 



       

     Figure 9: Plot of time-varying residual error from the two-tier AR-ARX model. 

 

4. Bridge Monitoring Using Eigenvalue Ratio Difference (ERD): 

Niu-Dou Bridge  

Description of the Niu-Dou Bridge test 

Niu-Dou Bridge is located at Yi-Lan County across Lan-Yang River. It is 

comprised of two independent bridges at the upstream side and the downstream side. 

The upstream side bridge is older than the downstream side one. They are both the 

simple support reinforced concrete bridges with 7 spans. Each span is 36.6m. The pier 

height is about 10.5m. Photos of Niu-Dou Bridge are shown in Figure 10. The 

upstream side bridge suffered severe scouring and the impact from debris flow during 

the typhoon season, and its foundations were repaired and strengthened many times in 

the past. Niu-Dou Bridge is considered as a dangerous bridge by the authority. The 

authority always closed the bridge during the typhoon strike for safety and planed to 

dismantle the bridge in 2011.  

Starting from April 2010 velocity response data of the upstream side bridge are 

collected. VSE-15D sensor was used and the data was transferred through wireless 

communication mechanism. The illustration of the sensor location and number are 

shown in Figure 10. All sensors are installed upon the bridge deck. Both the vertical 

and transverse direction velocity responses were collected. It includes the general 

measurement at 2010/04/08, 2010/06/09, 2010/07/23 and 2010/10/12, and the data 

during Fanapi Typhoon strike at 2010/09/19 ~ 2010/09/21. The transverse velocity 

responses measured from locations of D5 was used for discussion. Figure 11(a) shows 

the horizontal velocity time history from sensor at D5. The response amplitude is 

larger during the typhoon strike resulting from the wind and high water level during 

the typhoon strike. The main objective of the analysis is to study the applicability of 

using ERD indicator to identify the abnormal condition of the bridge during the 

typhoon strike.  

Analysis Result      

First, the short-time Fourier transform was used to realize the frequency content 

of the measured response. Spectrogram of the recorded velocity time history was 

studied (from D5 sensor node), as shown in Figure 11a. 



                             (a) 

 

(b) 

 

(c) 

 

Figure 10 Photos of Niu-Dou Bridge (a) before and (b) during typhoon strike and (c) 
the illustration of the sensor location and number 

 

The window length is 5sec and the hamming window function is used. It is found that 

there are several main differences between the normal condition (data measured at 

2010/04/08, 2010/06/09, 2010/07/23 and 2010/10/12) and abnormal environmental 

conditions (data measured during Fanapi Typhoon strike at 2010/09/19 ~ 2010/09/21): 

1. Under normal environmental condition, the spectrogram property is stable 

(time-invariant). The vibration mode at about 3Hz is always dominant. The 

modal frequency is not time-variant. 

2. Under abnormal environmental condition (Typhoon condition), the 

spectrogram property is unstable and variant with time. For example, the 

dominant vibration mode changes from about 3Hz mode to 7.5Hz mode for 

9/19 D5H data, and higher mode vibration with frequency between 10Hz to 

20Hz is excited for 9/20 D5H data.  

3. The observed signal frequency is different for different sensor location. This  
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Figure 11 (a) Measured velocity response at D5H of Niu-Dou Bridge; (b) Short-time 
Fourier transform of measured horizontal velocity response at D5H; (c) Eigenvalue 

ratio difference of measured horizontal velocity response at D5H; (d) Eigenvalue ratio 
difference of measured horizontal velocity response at D5H for L=5. 

 

may result from the large and complex structural system, which may induce 

the local vibration mode. 

4. Time-varying system frequency can be found from the measurement in 9/20 

(during typhoon) at D11H. The vibration mode with frequency 3Hz 

decreases to 2.5Hz and gradually returns to 3Hz again. 

Based on the above observation, we believe that the bridge dynamic 

characteristics may change resulting from abnormal environmental condition. 

However, we cannot point out the causes of this abnormality definitely. This 

abnormality may result from either the nonlinearity, damage of the bridge structure, 

applied force characteristics, the scouring of the bridge pier, etc. Other monitoring 



information is still needed to realize the real condition of the bridge. 

Figure 11(c) shows ERD result of the velocity time history for different sensor 

locations in transverse direction for sensor location D5. The rectangular window is 

used and the window length is 5sec. ERD result is stable from the measurements 

under normal condition, and variation of critical length can be observed from the 

measurements in abnormal environmental condition during 9/19 to 9/21. Figure 19(d) 

shows ERD result for the row size of Hankel matrix equal to 5 for sensor location D5. 

This figure also shows two y-axis grids which present the mean plus and minus one 

standard deviation of ERD result for the general measurement before the typhoon 

strike. The dramatic time variation can still be observed for the abnormal 

environmental condition during 9/19 to 9/21. For example, ERD of D5H sensor is 

equal to about 90% before and after typhoon strikes. However, its variation from 40% 

to 90% can be observed during typhoon strike. ERD result before the typhoon strike is 

a little different to ERD result after the typhoon strike for different sensing node. It 

means that the bridge system may have permanent change or damage after the 

typhoon strike. In contrast to spectrogram result, ERD result provides more clear 

information about the variation of bridge characteristics during the typhoon strike. 
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