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Part 1: Modeling of Environmental Effects for Vibration-based SHM Using Recursive
Stochastic Subspace Identification Analysis

Part 2: Develop On-Line Damage Detection Methods of Bridges under Abnormal
Conditions
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Part 1:
Modeling of Environmental Effects for Vibration-based SHM Using Recursive

Stochastic Subspace Identification Analysis

Abstract  This paper deals with the problem of a bridge structure identification
using output-only vibration measurements under changing environmental conditions.
Two key issues of a real-life monitoring system are addressed through analysis. The
first issue is the identification of structural dynamic characteristics directly from
measurements under operating conditions. The covariance- driven recursive stochastic
subspace identification (RSSI-COV) algorithm is applied to extract the system
dynamic characteristics. The second issue is to distinguish the system dynamic
features caused by abnormality from those caused by environmental and operational
variations, such as temperature, and traffic loading. In this study a solution is
proposed to model and remove the uncertainty due to environmental effects from the
identified system dynamic characteristics from on-going measurements. Nonlinear
principal component analysis incorporated with AANN is employed to distinguish the
dynamic feature changes caused by abnormality from those caused by environmental
and operational variation (i.e. ambient temperature and traffic loadings). Finally, field
experiment of a bridge is conducted. The variation of the identified system natural

frequencies was discussed by using the proposed method.
1. Introduction

Identification of modal parameters using ambient excitation is more feasible to large
engineering structures. Those responses caused by ambient excitation can be
employed in the field of structural health monitoring (SHM) to evaluate the health
condition of an in-service structure. Generally, the aim of vibration-based SHM
methods is to detect the appearance of damages by evaluating changes in the
identified vibration characteristics. In the past, many vibration-based methods were
developed to monitor structural safety. A common structural monitoring approach is
the modal analysis, which using output-only system identification technique to
identify structural modal frequency, modal damping ratio and mode shape from
vibration data. The extraction of features from these measurements and the analysis of
these features to determine the current state of health of the system using spaced
measurement provide a tool for SHM and damage detection.

Stochastic Subspace Identification (SSI) technique is a well known multivariate
identification technique by using the output-only measurements which can provide the
modal analysis of structures under operating condition. The SSI technique proved to
be numerically stable, robust to noise perturbation and suitable for conducting
non-stationarity of the ambient excitations. The stochastic realization algorithm
mainly focused on SSI-DATA and was fully enhanced by Van Overschee and De
Moor [1] and Peeters, Bart [2-4]. Application of the SSI-DATA algorithm to



investigate the dynamic characteristics of bridge and aeronautical structures had been
studied [5-7]. As opposed to SSI-DATA the SSI-COV algorithm avoids the
computation of orthogonal projection; instead, it is replaced by converting raw time
histories in co-variances of the so-called Toeplitz matrix, from which the system
dynamic characteristics can be extracted.

Different from the off-line analysis, the on-line system identification and damage
detection based on the measured vibration data has also received considerable
attention recently. Generally, the recursive Data-driven subspace algorithm is the most
widely used [8,9]. In order to reduce the effect of noise on the results of identification,
some filtering techniques need to be used in recursive SSI so as to enhance the early
emergence of a stable diagram for the identifiable modes and allows finding the best
choice of system order. Therefore, the recursive stochastic realization by the classical
Covariance-driven SSI algorithm (RSSI-COV) was proposed in [10]. In this paper the
RSSI-COV method is applied to extract the time-varying system natural frequencies
of Guan-Du Bridge. Through the continuous monitoring of the bridge the identified
system natural frequencies of the bridge caused by abnormality from those caused by
environmental and operational variations, such as temperature and traffic loading is

also discussed.
2. Overview of the Guan-Du Bridge and Instrumentation

The Guandu Bridge is a steel arch bridge across the Tamsui River, Taiwan, which
links two counties (Bali and Tamsui) of New Taipei City. It is a five-span continuous
bridge consisting of two 44m side spans, two 143m and one 165m center spans, and
its overall length is 539m. The bridge was opened for operation in October 31, 1983.
The deck has four lanes for vehicles. Unique feature of the bridge design is the arch
and cable system. Fig. 1 shows the photo of the bridge and the dimension of the
bridge is also shown in Fig. 2.

To extract the dynamic features of the bridge in its operating condition, a short term
continuous monitoring system is installed in this bridge. Twenty uni-axial
accelerometers (Tokyo Sokushin AS2000) were deployed along the bridge deck (on
both side of the vehicle lanes) for vibration measurement in its vertical direction. The
accelerometer has frequency range of DC-250Hz, amplitude range of +2g and with
sensitivity of 3V/g. Data communication through wireless sensing system is used to
reduce the cabling issue. The wireless sensing module collected the signal from each
sensor and broadcasted to PC server (about 2.0 km away) for conducting analysis.
Measurements are taken from four different time period: First, from 14:00 pm of April
Ist to 14:00 pm of April 2" of 2011; Second, from 14:00 pm of August 5™ to 12:00
pm of August 6™; Third, from 14:00 pm of January 17 of 2012 to 19:00 pm; Fourth,
from 12:00 pm of January 19 to 16:30 pm. The



Fig. 2: Sketch of the bridge which shows the dimension as well as the locations of
wireless sensing units on two sides of the bridge deck.

length of measurement is arranged to collect 1.0 min. data for every half hour with the
sampling rate of 200Hz (12,000. point per minute). During the vibration measurement
the outdoor temperature as well as the mean of the response variance from all sensing
nodes was also calculated.

In this paper the relationship between the identified system natural frequencies
and the unmeasured environmental and operational variations (traffic loading)
including the ambient temperature is characterized by Nonlinear Principal Component
Analysis (NLPCA).

3. Nonlinear Principal Component Analysis

The variation of the identified system modal frequencies may due to the influence of
time-varying environmental and operational condition. Traffic loadings and the
ambient temperature are also known to alter the measured natural frequencies and
damping ratios. Therefore, in order to achieve successful novelty detection, it is
necessary to develop a robust SHM system that can distinguish the effects caused by
abnormality from those caused by environmental and operational variations. Peeters
et al. [11] used a black-box model to describe the variations of eigenfrequencies as a
function of temperature. The damage can be detected if the eignfrequency of the new
data exceeds certain confidence intervals of the model. H. Sohn et al. employed
auto-associate neural networks (AANN) to discriminate system changes on structural
deterioration and damage from effects of the ambient conditions [12]. Yan et al.
[13,14] proposed the principal component analysis (PCA) to extract the intrinsic
environmental factors, and then adopted the novelty analysis to decide whether the
structure is damaged or not. Sohn et al. [15] proposed to train an auto-associative
neural network (AANN) to perform nonlinear principal component analysis (NLPCA)
if the environmental effect is highly nonlinear. In this study, a NLPCA (AANN)

network (with a circular node at the bottleneck), as shown in Fig. 3, which performs



the NLSSA by nonlinearly combining all the input modes into a single NLSSA mode.

Mapping Function @ De-mapping Function ¥
AL A -
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(m inputs) (M nodes) (d nodes) (M nodes) (m outputs)

Fig 3: Auto-associate Neural Network

The input modes for AANN in this study include the identified modal frequency,
variation of ambient temperature, and the Fourier amplitude induced by traffic loading.
Procedures to extract the NLPCA are listed as follows:

1. Data normalization for NLPCA: A matrix is formed from the input modes,

Pe R The component of this matrix will be used as input to auto-associate
neural network. Normalization with respect to each component of the matrix, P,,

is required to get the standardized component f’i. The normalization is defined

as:

A Pk —H
Pk ==L (1)
L

where p,. is the non-normalized value of the L-th component at time t, and
u, 1s the mean of the row vector P,. Each variable lA’i; (i=12,...,1), is a time

series of length K which are the inputs to a feed-forward neural network, mapping
through a bottleneck to the output P
2. Extract single mode from NLPCA: To reconstruct the single mode from AANN,
the mapping from the bottleneck layer to the decoding layer needs to be done from

the following equation:
AP = tanh((w'? - P+ b)), with k=1,..., M. Q)

where P is bottleneck node in NLPCA, w” is a weight parameter vectors, and
b is the bias parameter. The bottleneck contains two neurons p and q confined
to lie on a unit circle.

Finally, the network output is given by

Isi' = (WORD 4 5@, 3)



Consider the identified time-varying modal frequency and together with the ambient
temperature and the Fourier amplitude of acceleration response as inputs to the
AANN. After training from AANN the first NLPCA mode can be constructed.

4. Covariance-Driven Stochastic Subspace Identification

The covariance-driven stochastic subspace identification (SSI-COV) is addressing the
so-called stochastic realization problem, i.e., the problem of identifying a stochastic
state-space model from output-only data. Assuming a structure under consideration is
being excited by un-measurable stochastic ambient forces, the discrete time stochastic

state-space-model is expressed as:
X,,=Ax,+w, and y,=Cx, +v, 4)

where A is the system matrix, C is the output matrix, x e%> is the state vector and
y, €R™is the measurement vector, wi and vy represent the system noise and
measurement noise respectively. The SSI-COV method stems from the need to solve
the problem through identifying a stochastic state-space model (matrices A and C)
from output-only data. The first step is to establish the data Hankel Data matrix and
then form the block Toeplitz matrix by a multiplication between future and transpose

of past measurements:

Yi Y2 e Yn

Y ¥Ys e Ynu
R, R, R,
1 . . .o : Y R'+ R
H= o Yi Yia Yina |_| T . T, =| " 1 i 2 ZY/»(YP)T
\/N Yie Yiz o Yin Y;
Yiizo Yz e Yina R,, R,, - R

Yo Yo e Yaina |

where Y, denotes the past measurements and Y, denotes for the future measurements.
The block output covariance with time lag i is defined as R; and has the following
factorization properties:

R, =E[y,y, . ]=CA"'G (6)
where G is the next-step state and output covariance matrix G=Ex,,y,|. The
Toeplitz matrix can be factorized into the extended observability matrix O, e R"*"

and the reversed extended stochastic controllability matrix I, e®*", as shown
below:

C

CA i .
T, =0T, = [A"G .. AG G

1 1

CA™ %

Singular Value Decomposition (SVD) is used to perform the above mentioned
factorization:



T, = Usv' = (Ul Uz{sol 3j [EIZJ = UISIVIT
’ (8)

where UeR"™ and Ve®R™are orthonormal matrices, and S is a diagonal matrix
containing positive singular values in descending order. Comparing Eq. (7) and Eq.
(8), the matrix O; which contains the system matrices (A and C) can be computed by

splitting the SVD in two parts:
0,=U,S,* and T,=8]?V/ 9)

From O; matrix, the system matrices (A and C) can be obtained easily. In MATLAB
notation, the C matrix is just the first block of O;, i.e. € =0,(1:1,:). Then system

matrix A can be computed by exploiting the shift structure of the extended

observability matrix O;:

CA C

CA> CA , R .
= A and A=0.(1:1(i=1),)" O,(l+1:1i,:)

CA'| |CA™

(10)

where () denotes pseudo-inverse. The system matrix A is extracted by taking
advantage of the shift structure of matrix O;, and the pseudo-inverse of O; is to
determine the system matrix A in a least square sense. The modal frequencies and
effective damping ratios can be computed by conducting eigenvalue decomposition of
the system matrix A, and the corresponding eigenvectors multiplied by the output
matrix C are used to observe mode shapes.

The actual implementation of SSI-COV consists of estimating the covariance R,
computing the SVD of T, truncate the SVD to the model order n, estimating O; and
I'; by splitting the SVD in two parts and finally estimating A, C, G from O; and I’;.
However, to obtain a good model for modal order analysis applications, it is probably
a better idea to construct a stabilization diagram, by indentifying a whole set of
models with different order.

5. Recursive Stochastic Subspace Identification

The above-mentioned SSI techniques process measured data in one batch hence
cannot be used for on-line health monitoring and damage detection. Therefore, for
on-line tracking of time-varying structural modal parameters a recursive subspace
method needs to be developed. Instead of arranging the block covariance in the form
of so-called Toeplitz matrix, the form of a Hankel Covariance matrix must be adopted

which can be constructed by arranging the output measurement data vectors as



Yk—i+l

+ Yiis _T
follows: Yy, = . o Vi = YZ—I‘ YZ—i—l YZ—2i+1

Yk (11)
where y, e R"™is the output measurement vector. y; e R and y " e ®"™. [ is the

number of sensors and 7 is number of block rows. A Hankel covariance matrix, H< ,
is defined:

cov + _T 1 N + _T
HY =E[y,y, ]=§Z YiYu

k=2i ( 1 2)
Vi Yo 0 Yaoin yiT yiT—l .V1T
y‘ y oo y . yT yT oo yT T
— z.+2 z.+3 N‘—z+2 1;+1 ‘i '2 — YI:Y]:
Yo Vo 0 I Y ]{/—i y ]{/—i-l ey 1{/—2141

where k is ranging over the entire set of available data, and the order of the Hankel

7
1

Covariance matrix is “7”” with data length N. The need of a recursive fashion to update
SVD is required. A new approach called Projection Approximation Subspace Tracking
(PAST) was initially developed by Bin Yang [16], which takes the advantage of a
mathematical lemma to find the required column subspace as an unconstrained
optimization problem. Later the algorithm is modified to its Extended Instrumental
Variable version (EIV-PAST) by Gustafsson [17], which is a suitable algorithm for the
structure of SSI-COV.

To derive the RSSI, the Extended Instrument Variable technique is used. The

cost function to be minimized can be replaced by its corresponding EIV formulation:
2

gz(kwk)—w(z);h(k)af(k)( e ()-wee, O] (3)

where h(k)=W" (k—1)z(k) and the subscript » denotes the Frobenius norm defined

Viw()]=

as W/triccH ) . The least square solution of Eq.13 is readily found to be:

W()=TU}, (1)=C..( ;;(t)[chg (£)Ci (f)r (14)

t

where € ()= Y. 2lk" (k) = C.,(~1)+ 2" () and

k=1

Ch§ (t)=

M-

b
Il

h(k)s" (k)=C, (e~ 1)+ h(eg" (1)
1

W is a matrix with suitable dimension and has orthogonal columns containing any “7”
distinct eigenvectors and the RLS algorithm can be easily derived for updating W(?).
By substituting the random vector z(¢) and the instrument é’(t) by the corresponding

data vector in Eq.11, the objective function of EIV-PAST to be minimized will



become:

2

S vy -W) YRy

k=t—L+2i k=t—L+2i

7Iw()| = = |z~ wE |

i (15)

Similar to Eq.14 the least square solution of Eq.15 can be obtained as follows:

W= 0)= [ we) e ) 16)

Therefore, the column subspace U can also be obtained from the
Eigen-Decomposition (ED) of the Hankel Covariance matrix multiplied by its
transpose (the covariance of the Hankel Covariance matrix).

Application of EIV-PAST to RSSI-COV In SSI-COV algorithm the SVD of a

Hankel Covariance matrix is defined as:

S, 0YV/
HCOV — USVT — (Ul UZ{ 1 ]( ITJ
0 o)V a7

where U and V are orthonormal matrices, S is a diagonal matrix containing the
singular values. Since the Hankel Covariance matrix multiplied by its transpose can

also be expressed as:
cov COVT -
HOH™ = USV'VS'UT = U(Ss7)u” = u(ssT)u i

From the procedure of SSI-COV the desired system observability matrix O; can be
obtained by extracting the column subspace U; from Hankel Covariance matrix using

SVD. However, after solving Eq.17 by least square, the obtained dominant

eigenvector W(¢)=U',(¢) is actually the dominant eigenvectors of the Hankel

ovariance matrix instead of the desired column subspace. This latter must be
computed via ED of the “Covariance matrix of the Hankel Covariance matrix™ as
shown in Eq.17. Hence, the Extended Instrumental Variable Recursive Least Square
(EIV-RLS) algorithm can be applied to solve the EIV-PAST problem, which fulfills the
SVD-updating requirement of RSSI-COV to track the time-varying subspace U;(t).

To develop the adaptive Hankel covariance matrix for RSSI-COV, a new
incoming data point N+/ will be added to the exsisting Hankel covariance matrix and
converted into a new rank-one matrix. The sliding window technique will be used to
formulate the adaptive Hankel matrix for RSSI-COV, although this requires more
computations, but it offers a faster tracking response to sudden signal changes [16].
The sliding window technique requires 2 steps calculation for each incoming new data:
First, the oldest data is removed from the window (down-dating); and second, a new
data is incorporated (up-dating). Let the window length remains to be L, and then the

adaptive Hankel matrix is expressed as:

HY, =HY + y;vﬂ(y;vﬂ)r - yJJ\rf—L+2i(y;V—L+2i)T (19)



The use of moving window technique implies the EIV-RLS algorithm has to be done
twice to complete the subspace updating: after adding the new incoming data
(up-dating) the oldest data from the moving window must be discarded (down-dating).
Once the time-varying column subspace Uj(t) is estimated, the system information can

then be extracted.

6. Monitoring Results of the Guan-Du Bridge

The proposed RSSI-COV method that incorporated with NLPCA is applied to the
field data collected from the Guan-Du Bridge to investigate its ability to detect
abnormality in the presence of environmental and operational variations. Before
conduct the RSSI-COV to extract the system natural frequencies, first, the offline
SSI-COV is applied to identify the dominant frequencies of the bridge as well as the
mode shapes of the bridge.

Stabilization Diagram and system identification ~ As the system order is often
unknown, a common practice on operational modal analysis is to calculate the modal

parameters for increasing
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Fig. 4 Stability diagram from SSI-COV with system order of 492.
Table 1: Estimated natural frequencies and damping ratios

Mode 1 2 3 4 5 6 7 8 9 10 11
Freg.(Hz) 139 156  1.65 178 192 223 247 252 257 277  2.89
Damping 1.3 1.3 11 1.0 0.8 1.0 0.1 0.7 5.6 0.6
Ratio {%) ’\‘— Symmetric vs. Anti-symmetric modes 4‘/‘
Note | Symmetric vs. Anti-symmetric modes [

model order “n”. If n is higher than the true system order, the noise is modeled, but
the mathematical poles that raise in this way are different from for different model
orders if the noise is purely white. So the true physical system poles can be detected
by comparing the modal parameters for different modal orders. The detection can be

performed in a stabilization diagram. In this study a total of 20 sensors are used. Since



the original data sampling rate is 200 Hz, to reduce the computation time as well as
the dimension of the Hankel matrix, down-sampling to 50 Hz by using the
Butterworth IIR filter of order 10 is used. The dimension of Toeplitz matrix is
(3000x3000) in which i=150 and j=2701. Fig. 4 shows the stabilization diagram
obtained from SSI-OV method. For such a bridge, its dominant frequencies of interest
lie in the range of 0-5 Hz. The estimated natural frequencies and damping ratios by
the proposed method and the SSI technique are given in Table 1. A typical
stabilization diagram is implemented by comparing the poles obtained between two
consecutive matrix order from lowest to highest, then apply stabilization criteria to
modal frequencies, damping ratios and mode shapes, to discriminate if a pole is stable

or not. The chosen stability criteria are referenced from [9] and are defined as follows:
Modal frequency: (| (‘ OV — ) f )‘XIOO%S 1%
Modal damping ratio: (( VW) e )x 10006<5% (20)
Mode shape: (1—MAC(i,i +1))x100% < 3%

where i is the number of block rows of the Hankel matrix, which determines the

Toeplitz or projection matrix order, and MAC is the Modal Assurance Criterion, which

is defined as the squared correlation between two mode shape vectors:

(v(i+l)Hv(i))2
i+D)H i+ (i
(v( DE( 1))(‘,() v()) 21)

MAC(i,i+1)=

where the subscript / denotes Hermitian transpose, v is the given mode shape vector,
and MAC is a scalar between zero and unity. Generally, the system poles are more
stable in terms of its modal frequency as the matrix order is increased, followed by
mode shape, and damping ratio is the most unstable quantity. Fig. 5 shows the
identified mode shapes (for frequencies lower than 3.0 Hz). It is important to point out
that both symmetric and anti-symmetric modes can be identified. As shown in Fig. 6,
the identified mode shapes for f=1.56 Hz versus =2.57 Hz, f=1.65 Hz versus {=2.77
Hz, and f=1.78 Hz versus f=2.89 Hz are symmetric versus anti-symmetric mode,
respectively.

Quantification of Vibration Amplitude  Since the response measurement of the
bridge is mainly caused by traffic-induced vibration, it is necessary to quantify the
bridge vibration amplitude so as to achieve successful novelty detection. To quantify
the bridge vibration amplitude during a specific time window caused by

environmental and operational variation, a systematic way of extracting

vibration amplitude needs to be established. Consider a specific time window of
analysis in which the Fourier amplitude spectrum from each measurement is
calculated. The frequency band of the spectrum needs to cover all dominant
frequencies that were identified from SSI-COV. It is defined:

F=[{fi} {fi} - {f} 22)



Frequency = 1.39 Hz. Damping = 1.3 % Frequency = 1.56 Hz, Damping = 1.3 % Frequency = 1.65 Hz, Damping = 1.1 %

Fig. 5: Identified the first six fundamental mode shapes of Guan-Du Bridge.

Symmetric mode: 1.56 Hz Symmetric mode: 1.65 Hz Symmetric mode: 1.78 Hz
| N T .

Anti-Symmetric mode: 2.575 Hz Anti-Symmetric mode: 2.746 Hz Anti-Symmetric mode: 2.819 Hz

A Dy

Fig. 6: Plot the identified symmetric and anti-symmetric modes of Guan-Du Bridge.

where 7 is the number of sensors and { fl } 1is a vector which listed all the Fourier

[IF &3]

amplitude spectrum from response measurement at sensor node “i”. Principal
component analysis (PCA) is used through singular value decomposition to extract

the principal component of the response Fourier amplitude:

F=[{f}{fi} {f,}]=USV' (23)

The first principal component, is a function of frequency, can be extracted. The
amplitude from the 1% PCA can be used as the quantification of the vibration
amplitude.

Application of RSSI-COV method Application of the proposed recursive
stochastic subspace identification scheme to the response measurement of Guan-Du
Bridge, the time-varying system natural frequencies can be identified. The time
window for recursive identification is 45 sec. and moving with 5.0 sec interval. The
identification scheme is shown in Fig. 7, and the related model parameters for RSSI
are also indicated in this flowchart. It is important to point out that data
pre-processing is important in order to have a better results of identification and can
reduce the computation time. Fig. 8 only plots the identified time-varying system
natural frequencies at 1.56 Hz (symmetric mode) and 2.57 Hz (anti-symmetric mode)

from five different time period of measurement. The two identified frequencies in this



figure will have the same mode shape with MAC higher than 60%. Other system
natural frequencies can also have the same results. It is observed that the

time-variation of the identified system natural frequencies do exist.

Original Data

Low-Pass filter (Down-sampling=50 Hz)
(Sampling rate: 200 Hz)

(Butterworth IIR Filter of order 10)

I

Singular Spectrum Analysis (SSA)
(Order=492). Cgyp=0.99

I

Recursive Stochastic Subspace Identification (RSSI)
(Moving window length=45. Sec, Cs5yp=0.99)

l

Tdentity time-varying system natural frequencies & damping ratios

—>

Construct stability diagram
Output SST Results
(for a specific time window)

Fig. 7: Flowchart of data analysis and identification procedures.

Nonlinear Principal Component Analysis To distinguish the change of system
natural frequency caused by abnormality from those caused by environmental and
operational variation the nonlinear principal component analysis is applied. Based on
the above mentioned AANN method, the relationship (nonlinear principal component)
among the identified system natural frequency (f=1.554 Hz), ambient temperature and
Fourier amplitude of response at specify system frequency is investigated. Fig. 9a
plots the 3-D relationship between the normalized three physical parameters. The
extracting principal component from the data is also shown in this figure. To plot the
2-D relationship Fig. 9b shows the relationship between the normalized system
natural frequency and the ambient temperature. It is observed that the system natural
frequency decreases with the increasing ambient temperature. Same analysis can also
be applied to different system natural frequency.
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Fig. 8: Plot the time-varying bridge natural frequencies (f=1.56 Hz and £=2.575 Hz) from five
different time period of monitoring.
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Fig. 9: (a) 3-D plot on the relationship among bridge vibration frequency (f=1.55 Hz), ambient
temperature and the vibration amplitude. The nonlinear principal component is also
shown, (b) 2-D plot on the relationship between Fourier amplitude and temperature.

7. Conclusions

This paper presented the on-line system parameter estimation technique from the
response measurements through Recursive Covariance-driven Stochastic Subspace
identification (RSSI-COV) approach. To avoid excessive time-consumption in
Singular Value Decomposition, Extended Instrumental Variable Projection
Approximation Subspace Tracking algorithm (EIV-PAST) is used for this study. With
the proposed method a bridge structure monitoring system is developed. Through the
output-only response measurement a Stochastic Subspace Identification (SSI) is
carried out to extract the dynamic characteristics of the bridge under its operating
condition. To distinguish the abnormality of the identified system natural frequencies
from those caused by environmental and operational variation, the time-varying
modal parameters using recursive SSI-COV algorithm was developed. The accuracy
and robustness offered by RSSI-COV can extract the key feature directly from the
response measurement to obtain the evidences of system changes and provides a very
stable modal frequency tracking. In this study, the nonlinear principal component
analysis is employed to extract the nonlinear relationship between system natural
frequencies, ambient temperature and amplitude of external traffic loadings. Through
this study the following conclusions are drawn:

1. Pre-processing of the measurement can provide accurate result from using SSI,
and can also speed up the calculation. For recursive stochastic subspace
identification, it is necessary to develop a new filtering algorithm to
down-sampling the data.

2. Application of RSSI-COV to identify the system dynamic characteristics, it is
important to select suitable model parameters for stochastic subspace
identification. These parameters include: the length of moving time window, the
number of order for Hankel matrix, and Percentage of Singular Values (Csyp)
needs to be considered

3. Incorporated with ANN the Nonlinear PCA technique is employed to extract the



nonlinear relationship among the identified system natural frequency, ambient

temperature and the vibration amplitude of the measurements.
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Part 2:
Develop On-Line Damage Detection Methods of Bridge
Under Abnormal Conditions

ABSTRACT

The objective of this paper is to discuss two different approaches on structural
damage detection: one is the vibration-based damage detection and the other is the
model-based damage detection. The vibration-based damage detection method is
based on the extracted sub-space or null-space from the singular value decomposition
(SVD) of analytic matrix formed from data Hankel matrix. Damage detection
algorithm is then developed by considering the orthonormality between the subspace
and null-space. To form the analytic matrix three different algorithms can be used:
from the trajectory matrix in Singular Spectrum Analysis (SSA), from Toeplitz matrix
in SSI-COV, or from QR decomposition of data Hankel matrix in SSI-DATA. The
model-based damage detection is using the AR-ARX model to identify the model
coefficients from which the damage sensitivity factor can be generated. Discussion
among these damage detection methods was made through the response data collected
from the shaking table test of a 6-stry steel frame with different damage scenarios and

the scouring test of bridge model in hydraulic lab during scouring process.

1. INTRODUCTION
Continuous vibration monitoring provides a valuable tool to complement other
nondestructive evaluation methods. It directly addresses the performance of the
structural condition under service loading. Damage identification based upon changes

in dynamic response is one of the few methods that monitoring changes in the



structure on a global basis. The premise of vibration-based damage detection
approach is that the damages will significantly alter the dynamic response, due to
changes in structural dynamic characteristics or the structural boundary conditions. To
achieve this damage detection goal, techniques on structural health monitoring need to
be developed. The structural health monitoring process involves the monitoring of a
structure over time, the periodically collection of response measurement from an array
of sensors, the extraction of damage sensitive features through analyzing the data, and
determine the current state of the health. Early damage detection and eventual
estimation of damage is an important problem, since it forms the basis of any decision
for structural repair and/or part replacement.

There are several damage detection methods without using input information.
The results include different experimental techniques, methodologies and signal
processing methods, as indicated by Doebling et al. in 1996 and Staszewski in 1996
[1,2]. Most damage detection methods use a relationship between a structure
condition and a diagnostic symptom indicating damage. The emergency of damage
can be indicated by a change of these symptoms. However, due to the complexity of
engineering structures, it is difficult to observe small changes of symptoms which can
lead to early damage detection. Therefore, different signal processing methods are
used to obtain features for damage symptoms. It appears that in practice that signal
processing is a crucial element in the implementation and operation of any damage
detection system.

Considering vibration-based signal processing and feature extraction, singular
value decomposition (SVD) has been widely used in many different system
identification and damage detection methods. Many publications start to apply SVD
to detect structural damage. Ruotolo and Surace [3] investigated SVD for damage
detection by comparing current sensor data to a subspace spanned by measurements
taken from the healthy structure with varying operational and environmental
conditions. Yan and Golinval performed SVD to obtain characteristic subspace from
measurements [4]. It was demonstrated that the structural features are mainly located
in the active subspace, which is orthonormal to the null subspace. If damage occurs
the orthonormality relation between two subspaces will be broken. In relating to SVD
singular spectrum analysis (SSA) has been used as an alternative to traditional digital
filtering method. SSA procedure mainly involves two stages: decomposition and
reconstruction. It takes singular value decomposition of Hankel matrix embedded by
analyzed time series and decomposes it into several simple, independent and
identifiable components. It is a novel technique of time series analysis and signal
feature extraction. The development of SSA is associated with publication of several
papers by Broomhead et al. [5,6] and Bosso et al. [7]. The basic capabilities of SSA
include finding trend, extracting periodic component, smoothing time series and
de-noising of time series which can be used for damage detection.

Time-series analysis based on the use of autoregressive (AR) model has also



been extensively used in the SHM process as a feature extraction and damage
detection technique by Sohn & Farrar [8]. This technique is typically applied to
experimentally measured time-series data where future data values are predicted from
past values. The residual errors have had considerable applications as
damage-sensitive features. Furthermore, in addition to the widely used residual errors,
the estimated AR coefficients are also directly used as damage-sensitive features. The
AR model coefficients are used to define the feature vector which serves as the
diagnostic tool for damage identification had been developed by Nair, et al. [9] and
Nair and Kiremidjian [10]. This approach intends to extract features capable of being
sensitive to the effects caused by damage and insensitive to the effects due to
operational and environmental variations.

The application of system identification to vibrating structures yields a research
domain in civil engineering, known as experimental modal analysis (EMA). In this
paper two different types of system identification and feature extraction techniques
are discussed for generating the damage indices for damage detection. The first one is
the subspace-based damage detection by using singular value decomposition of data
Hankel matrix or analysis matrix (i.e. using null-space and subspace-based damage
detection); the second one is using the time-dependent ARX model and generate
damage sensitive features for damage detection (i.e. using autoregressive (AR) model
coefficients or using residual error of two-tier AR-ARX model). Methodologies from
these two techniques, which include five different definitions of damage indices, are
introduced and briefly summarized. The performances of these five damage indices
are investigated through comparative study of using response measurement from
scenario damage of a steel frame subject to white noise excitation and the bridge

scouring test in large hydraulic laboratory.

2. REVISITS TO DAMAGE IDENTIFICATION METHODS

2.1. Null Subspace-based Damage Detection
Considering two matrices, Xg and X refer to the analysis matrices represented by
the data from health (reference) system and monitor (target) system, respectively. The

results from singular value decomposition of these two matrices are expressed as:

SSO 0 T *
Xy =[Uyp Uyl 0 S [Vo  Val ®UgSyVe
n0 (1)

S 0

X =[U, Un][os S}[Vs V.1"~USV/

n

()
where Us (or Use) and Vi (or Vi) are subspaces of matrix X spanned by left singular
vectors and right singular vectors corresponding to non-zero singular values

respectively; U, (or Uye) and V,, (or Vp,) are null-spaces of matrix X spanned by left



singular vectors and right singular vectors corresponding to zero singular values
respectively. The subspaces and null-spaces of matrices Xy and X satisfy the
orthogonal property. If the target system is undamaged, the subspace of the matrix X
will be approximately equal to the subspace of the matrix X of the reference system.
Therefore, one approach to detect the damage between the target and the reference
systems is by checking the orthogonal property between the null-space of the health

(reference) system and the sub-space of the healthy system:

UU., =0 or V,V,, =0 if monitor system is undamaged

UU!, #0 or V,V, #0 if monitor system is damage

s ' n0

For computation simplicity, consider only the subspace and null-space spanned by left
singular vector. The damaged indicator, DI,, based on the null-space of the matrix X,
can be defined as the absolute mean value of the matrix evaluated from subspace and
null-space:

DI, = mean{{U,U%} 3)

where mean{} evaluates the mean value of all elements of matrix in {} and | *| makes
all elements of matrix positive. The value of DI, ranges from 0 to 1.

Different from the damage index shown in Eq. (3), the subspaces of matrix Xxg
and x also satisfied the following orthogonal properties:

K
Z(XoTiXOi _X;{iUSOU:;)XOi) ~0 if S, =0

i=1

(4a)

i

K
T T Ty ) o . N
g:(xi x,-x;UUXx;)=0 if S, =0 (4b)

Using Eq. (4), the difference between two subspaces can be used to evaluate the
projection of the column vector of the matrix X (target) on the subspace of the matrix
X (reference state) as:

K
Z( x; x; —x; U, Ugx, )0  if monitor system is undamaged (5a)
i=1

K
D (xix; —x; U, Ugx; )#0  if monitor system is damaged (5b)

i=1
After normalization with respect to the norm of matrix X, the damage indicator DI,

can be defined as:
K

Z(XiTXi _XiTUsoU;)Xi)
DI, =+

K

(6)
The denominator of Eq.(6) is used to normalize the damage index DI so as to have

DI in the range between 0 and 1.

To create an analysis matrix for SVD to develop damage index, three different



definitions on the analysis matrix can be defined. First one, consider the process on
Data-driven Stochastic Subspace Identification algorithm (SSI-DATA). The first step
of SSI-DATA is the LQ decomposition of the data Hankel matrix, as shown:

yialr - yi2l - yIK]
yo| Y2l yBl e K+ [Y ] Ly 0 ]Q;
| 5 E - Y; - L, L, QL
y[L] y[L+1] ---  y[N] (7)

and then takes the singular value decomposition of the element matrix L; of lower
triangular matrix to obtain the observability matrix O. The analysis matrix X for

damage detection can be defined as:
X =L, L3, (8)

To identify a suitable system order for SSI-DATA so as to separate the significant
singular values from the noise (or null-space), the system model order “n” can be
determined from the selected number of singular spectrum in conducting the SV

based on the proposed Cgsyp value which is defined as:

2.

S
_ j=1"1
CSVD '

2 ©)

where s; is the value of singular spectrum and N is the total number of singular values
along the diagonal of matrix [S] in SVD and with (n<N).

The second one to define the analysis matrix for defining the damage index is
using the Covariance-Driven Stochastic Subspace Identification (SSI-COV). The
analysis matrix X can directly be defined from the Toeplitz matrix (T) in SSI-COV:

_ _ T
X=T=Y,Y, (10)

The system order for SSI-COV, Eq. (9) can also be applied.
The third one to define the analysis matrix is directly using the data Hankel matrix

(trajectory matrix), and define the analysis matrix X as:

_ T

Based on the proposed three different analysis matrices, either null-space based

damage index or subspace-based damage index can be calculated.

2.2 Damage Detection using Coupling of Singular Values from SSA

Singular spectrum analysis (SSA) is a novel technique and has proven to be a
powerful tool for time data series analysis. It takes the singular value decomposition
of data Hankel matrix embedded by the analyzed time data series and decomposes the
data to several simple, independent and identifiable components. Basic capability of
SSA includes finding trend, extracting periodic component, smoothing time series and

de-noising of time series [11,12]. The basic procedure of SSA consists of four steps:



embedding, singular value decomposition, grouping and diagonal averaging. In the
first step (embedding), the one dimensional time series is recast as an L-dimensional
time series (trajectory matrix, same as Eq.(7). In the second step (singular value
decomposition), the trajectory matrix is decomposed into a sum of orthogonal

matrices of rank one:
. T
Y=USV (12)

where U and V are orthogonal matrices and S is a diagonal real matrix such that its
elements (o, > o, > o, >---.> 0, ) are the singular values of the trajectory matrix Y.
It is noted that the singular values of Y are the square root of the eigenvalues of C
(C=Y"Y). These two steps constitute the decomposition stage of SSA. In the third
and fourth steps, the components are grouped and the time series associated with the
groups are reconstructed. The aim of this stage is to separate the additive components
of the time series. It can be seen as separating the time series into two groups: the
“signal” and the “noisy” components, which are by definition the components that are
not interested in.

In SSA, if a periodic mode is encountered, each of which will be spitted into a pair
of modes with high “degree of coupling”, otherwise, the coupling effect is reduced.

Here the “degree of coupling” is defined as:
Pr =01/ Oy k=12n (13)

where o; is the /™ singular value in singular spectrum analysis. If p, Pparameters
show an anomalous decreasing behavior the periodic mode collapse and the fact
associated with different types of structural modes. Then, the loss of degree of
coupling can be used of damage detection. In this study the coupling level between 1%
and 2™ singular values in SSA are used for discussion because these two singular
values represent most significant principal component in the analyzed time series. It is
now defined the difference of the first two largest eigen values as one of the damage
index (or Eigenvalue Difference Ratio, EDR):

DI, =(0;~0;)/ 3, 0! (14)
If the difference between the 1% and 2™ singular value is small which indicates the
principal component do exists in the analysis data. If the difference between the 1%
and 2™ singular value is large different type of principal component has occurred. If
the damage of a structural system can alter the dominant principal components, then
high value of “DI,;” may detect this change. It is important to note that in SSA the
distribution of singular spectrum can also reflect the feature of signal; therefore, it can
also be used as a measure of structural damage characteristics. The variation of

singular spectrum can be defined as:

DI, =1- MAC(S,S,) (15)



where Sy is the distribution of singular spectrum from reference state (undamaged
case) and S is the distribution of singular spectrum from analyzed state (damaged
case), and MAC is defined as

vt | 2S84

|2

> S(a)Y. S (q) 16
Larger MAC value indicates the difference on the distribution of singular spectrum
between reference state and analysis state is almost the same which means almost no
damage between these two states.

The SSA reconstruction process can also be used for damage detection. Since the
first two singular spectra values can represent a harmonic wave if the degree of
coupling is strong enough, besides, it also represents the major principal component
of the structural response. Therefore, the reconstruction process by using the first two
largest eigenvalues from each time window can provide information on the change of
principal component of the structural response. This change can be used for damage
detection. Comparison on the root-mean-square value between the reconstructed data
from the reference data and from the different moving time window, damage

assessment can be performed.

2.3 Damage Detection using AR-ARX model
Different from using vibration measurement directly for damage detection, a
model-based damage detection technique is also examined. Approaches based upon
the statistical pattern recognition paradigm proposed by Sohn et al. [8] and extended
by Lynch et al. [13] for on-line damage detection is discussed first. A two-stage
prediction model, combining Auto-Regressive (AR) and Auto-Regressive with
eXogeneous input (ARX) techniques, is constructed from the selected reference
measurement as the undamaged model. The procedure is briefly described below:
a. Construct an AR model with p auto-regressive terms from a reference segment
data y(2):

V(1) =20 4y, (k=i)+ri(k) (17)

where ¢ 1is the i-th AR coefficient, p is the order of the AR model. It is important
to identify the suitable model order for the AR model. r}, is the residual error and m
indicates m-th time series. “m” sets of response data has to be collected, and a set of
reference AR coefficients can be obtained for the structure. Based on these identified
AR models, one can select a suitable one as a reference model. It is important to
identify the suitable model order for the AR model.

b. With the selected “n-th” data set, the residual error, r;, will be used as the
background (or environmental signal) noise. Therefore, with this selected reference

data set, an ARX model is employed to reconstruct the input/output relationship

between rj, and y (1):



W)=Yy, (k=i)+ Y Byr (k= j)+&u(k) as)

where a and f are the coefficients of the ARX model, and a and b are the order of

the ARX

model. The final residual error of the ARX model, &', , is defined as the damage
sensitive feature of the structure. An extensive library of AR-ARX models, all of the
same model size, corresponding to the undamaged structure is generated by exciting
the structure with different levels of ambient excitation. One set of the ARX model
coefficients and the standard deviation

of &,, forthe reference AR-ARX model will be used as the undamaged reference.
c. For the structure in an unknown state, a new set of ambient vibration data of the
structure is measured. An investigation is made to determine how well the reference

ARX(a,b) model can reproduce the input/output relationship of the residual error and
the measurement y(t):

g(t)=F() =D @ y(t=i)=> Bri(t=Jj) (19)

Note that the ¢, and S, coefficients are associated with the reference model.
d. Finally, the standard deviation of the ARX model residual error, 0(5;), using

the newly measured data is determined. The estimated standard deviations of &;(7)

and &',,(t) is then calculated and is defined as the damage sensitive feature. If the

ratio of o-(g;, )/ o(&', ) becomes larger than some threshold value h(>1), then the

system is considered to have undergoes some structural system changes. This
algorithm can be applied for on-line damage detection.
2.4 Damage Detection Using Damage Sensitivity Factor

Since damage detection can be demostrated through the analysis of measurement
directly from response vibration signals of a structure before and after damage,
therefore, either single-variant or multivariate auto-regressive (AR) time series can be
used to model the vibration data obtained from the sensor. In general, the AR
coefficients provide information about the system natural frequencies and the
damping ratios. Consider the single-input and single-output (SISO) case as shown in
Eq.(17), the method of least square can be applied to estimate model parameters. Nair
et al. [14] reported that the Damage Sensitivity Factor (DSF) depending on the AR
coefficients is the most promising because these coefficients are statistically the most
significant among all the coefficients of model for damage detection. The DSF is

defined as:



DSF il

acc,l = ) 2 )
\[0(1 +a, +ao (20)

Different from the SISO AR model, to determine the multivariate AR coefficients, the

multivariate AR model is considered:

{yO}+ ey -D}+[a,[{p -} + ..+ [, [{y(t- p)} = {e(t)} N

o DO, 2[4, 00, e,
where [A]dxdp :[—[al]—[az]...—[ai]...—[ap] ] is the model parameter matrix, d is

the number of sensing nodes, p is the order of the AR model, [ai]dxd is the matrix of

autoregressive parameters relating the output { y(t—i)} to { y(t)} , i=I1:p, and

{y(t - 1)}d><1

{(p(t)} it = {y(t_z)}"“ is the regressor for the output Vector{ y(t)} , { w(t —i)}

dxl1

W=p,,
(i=1:p) is the output vector with delay time ix7;, T is the sampling period (s), and

{e(t)}dx1 is the residual vector of all output channels, and considered as the error of

the model.

If (N > dp+d) consecutive output vectors of the responses from {y(k)} to

{ yv(k+N —1)} are taken into account, the model parameters can obviously be

estimated with the least squares method by minimizing a norm of error sequences.

The data matrix is first constructed from N successive samples [15,16]:

T

{p)},, oy,
{p+n), . {va+D),

[K]Nx(dp+d) -

{pt+N-Dj,, {ye+N-Dj, | 22)

The QR factorization of the data matrix [K ]NX( i) :[Q]NxN [R ]Nx( dpray €A1 be
computed by using the Householder method [17] or Givens rotation [18]. It gives

[0],., Which is an orthogonal matrix (Q.QT =1 ) and [R] which is an upper

Nx(dp+d)



triangular matrix with the form:

[Rll]dpxdp [Rlz]dpxd

[R]Nx(dp+d) - 0 [R22]d><d
0 0 (23)
The OR factorization of the data matrix K leads to the Cholesky factorization
I'=K'K=R'R
I C R
[RLJ[RG] [ RG J[R]+[ RS [Ros] o

The model parameters matrix [A] dxdp is calculated from the Cholesky factorization:

[A]= (IRLITR, D - (R IIR, D
= ([R1[R, D" 25)
and the estimated covariance matrices of the unnoised part [D],,, and of the error

part [E],, can be estimated via the computation of the QR factorization as
follows[19]:

[D]dxd = [Rsz] [R12] (26)

T
[E ]dxd = [Rzz] [Rzz]
Once the model parameters are estimated, the state matrix of the system can be

established in the form of autoregressive parameters [20]:

_[al]dxd _[aZ]dxd _[ai]dxd _[ap Lxd
I 0 0 0
[®],..=| o I 0 .
0 0 0 1 0

- - 27)
where the poles of the model are also the root of the characteristic polynomial of the
state matrix.

Since the model is updated with respect to its system order, it is appropriate to use
stabilization diagrams to identify the stable system natural frequencies. By observing
the stability of the identified frequencies with respect to increasing model order, it is

possible to distinguish the physical modes from the spurious modes.

3. EXPERIMENTAL SETUP FOR DAMAGE DETECTION

To discuss the above mentioned damage detection algorithms the failure of bridge
structure during scouring process is examined. In this example an experimental testing

on a bridge model subjected to scouring test. A four span bridge model with simply



supported girder on each pier was constructed to across a flume of width 4.5 meter in
the hydraulic lab. The span length is about 1.0 m. The sketch and the dimension of
this bridge are shown in Figure 1. The bridge piers are embedded in sand with depth
of 30 cm. 12 velocity sensors are deployed along the bridge deck to collect the
vibration signal of the bridge during scouring process in transverse direction (along
stream line). The scouring test runs for about 3 hours. To focus the major scouring
phenomenon on one single bridge pier, the major running stream water was guided
and focuses the scouring effect mainly on the 3" pier between sensor number 9 and
10. Photos of the bridge test setup and the scouring test are shown in Figure 2.
Velocity response data of the bridge during scouring process are collected. The
VSE-15D sensor is used and it is a servo velocity meter produced by Tokyo Sokushin
Co., Ltd. This sensor is very sensitive to detect the low level vibration motion and the
linear range (0.2Hz~70Hz) is suite for SHM applications. Data acquisition system
collected all the velocity response of the bridge from all twelve sensors with sampling
rate of 200 Hz. Figures 3a and 3b show the collected velocity response from sensor
node #2 and node #9. The total run time on this bridge scouring test is 200 min.
(12,000 sec). The response data from all sensing nodes (12 sensors) can be used for
on-line monitoring of the bridge structure. As shown in Figure 3, at pier 3 the laying
depth (embedment depth of sand, i.e. 30 cm) significantly reduced at the beginning of
the incoming water as compare to the other piers. From the observation of the
recorded time data, at t=5800 sec and t=7500 sec there are two significant changes of
vibration measurement were observed from sensor node No.9. This abnormal

response data is due to the settlement of pier No.3.
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Figure 1: Sketch and dimension of the model bridge for testing.
The locations of sensors on the deck are also shown.

3.1 Results using null subspace-based damage identification
Three different analytic matrices were introduced in section 2 which can be used
to calculate the damage indices: SSA-based, SSI-DATA based and SSI-COV based.



Figure 2: Photos of the bridge scouring test in the hydraulic laboratory;
(a) test setup, (b) during the scouring test, (c) after the scouring test.
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Figure 3: Velocity response from sensing nodes 2 and 9.
Damage Identification from bridge scouring test Before conducting the

damage assessment, in order to have a better understanding on the bridge behavior
during scouring, a multivariate recursive data-driven stochastic subspace
identification technique (RSSI-DATA) is used to identify time-varying system natural
frequencies of the bridge [21]. Figure 4 shows the time-varying system natural



frequencies of the bridge system. It is clearly observed that the change of system
natural frequencies is more focus on some fundamental modes and is in consistent
with the abnormal change of response measurement. The identified time-varying
system natural frequencies will be served as the reference to compare with the

extracted damage features by using the proposed damage detection methods.
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Figure 4a: Plot the comparison between the identified time-varying system natural
frequencies (using SSI-DATA method) and the recorded response (from
sensor node 9) of the bridge during scouring process.
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Figure 4b: System identification result of scouring test data with different Cs,
(SSI-DATA algorithm using data from all 12 sensors)



In this case study, L=100 is used in data Hankel matrix and select Csyp=0.99 to
calculate DIy and DIgby using SSI-DATA based algorithm. Through moving window
technique, Figure 5 shows the estimated time-varying damaged indices (DIy and DIy)
by using response data from sensors on different deck. It is observed that no matter
which data set was used, both indices can identify the damage situation. The
estimated damage indices from data set on deck 3 and on deck 4 show larger damage
indices than other set of data because the significant damage of pier 3 can influence
sensing data on both deck 3 and deck 4. The result is inconsistent with the identified

time-varying system natural frequencies.
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Figure 5: Estimated time-varying damage indices from different set of sensing
data; (a) Null space damage index, (b) Subspace- based damage index.

3.2 Results using degree of coupling from SSA

Damage Identification from bridge scouring test Different from the damage
scenario of the 6-story steel frame, the damage identification of bridge scouring will
focus on low frequency damage. With the concept of moving window (window
length=40 sec) the data Hankel matrix was formed from each time window by using
either from individual sensing node or from all recorded sensing nodes. Figures 6a
and 6b show the difference between the first two largest eigenvalues by using data
from single measurement (sensing node 2 and node 9, respectively). Larger difference
indicates poor degree of coupling. This two figures show that prior to the significant
settlement of the bridge pier No.3 after t=7800 sec, the distinct feature of the
difference between two largest eigenvalues can be identified at about t=5800 sec. This

feature can be served as an index for early warning. The difference on the first two



largest eigenvalues can also be calculate from all set of measurements instead of using
data from a single sensing node, as shown in Figure 6¢ (plot in log scale). The result

is even more promising for early warning.
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Figure 6: Difference between the 1% and ond eigenvalue-ratio from Singular Spectrum
Analysis, (a) using single measurement from sensing node 2, (b) using single
measurement from sensing node 9,(c) using all set of measurements.

In cooperated with moving window technique (each window with 40 sec), the
reconstruction process of signal by using only the first two largest eigenvalues from
SSA can be generated. Conduct this process in each moving time window. Then by
selecting the original reconstructed signal as reference (or undamaged case), and
comparison on the root-mean-square (RMS) value between the original signal and the

newly reconstructed signal (through moving window technique) can be made. The



RMS error between the reconstructed and original recorded signal (the first time
window) is plotted and shown in Figures 7a and 7b. It is observed that the RMS error
of the sensor signal from different sensing nodes shows a significant change at around
t=5800 sec before the large settlement occurred. Besides, if the selected sensing node
is more close to the damage location, larger RMS value can be observed. As shown in
Figure7b the RMS value from sensing node 10 shows the largest. This information
can also be used as an index for damage detection as well as provides an early

warning message.
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Figure 7: Plot of RMS error between the measurement and the prediction using the
reconstruction signal (from the two largest eigenvalues) of SSA; (a) From
sensing nodes 1,2,3, and 4; (b) from sensing nodes 10, 11 and 12.

3.3 Results from using AR model for damage detection

Damage Identification from bridge scouring test Estimation of DSF value
from the bridge scouring test data can be applied by using either single-variate or
multivariate AR model. The order of 40 is selected for using the single-variate AR
model. With the consideration of system damping ratio less than 10% to select the
system poles, Figure 8a shows the time-varying DSF value. Although the computation
still contains spurious modes (with order of 40), the results are noticeable to indicate
the significant change at t=95 min. and t=125 min. The analysis of using multivariate
AR model is also applied. The order of multivariate AR model is set to 8 (using data

from all sensing nodes) and every mode with damping ratio less than 20 % is



considered to calculate the DSFE as shown in Figure 8b. The change of DSF at t=95
min. shown in this figure is even more clear to be identified than using only

singlevariate AR model.
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Figure 8: (a) Damage sensitive feature using data from sensor 9 using AR
model of order 40 and damping ratio below 10%
(b) Damage sensitive feature using data from all sensors using AR
model of order 8 and damping ratio below 20%

For the distributed sensing system on long extended structure, such as
monitoring the bridge vibration, the two-tier AR-ARX model can also be used for
damage detection. A reference database corresponding to the undamaged structure
needs to be defined. It is assumed the initial 80 min. sequences of data (each with time
window of 40 seconds), from the recorded response are selected as the undamaged
(reference) data. Once the reference database is established, an AR-ARX model pair
is fitted using the response data. Following the procedures discussed in the previous
section, with the new appending data the ratio of AR-ARX two-tier model residual
errors can be generated for each moving time window. The difference on the residual
error is attributed to the difference between the current state of measurement to the
reference state. As shown in Figure 9, the residual error starts to increase at t=80 min.
and then follows at t=95 min. and 125 min. The increase of residual error at these
three different specific times is in consistent with the time when the change of
dynamic characteristics of the bridge structure occurred. Using data from different
sensing node (i.e. Node 10, Node 11, or Node 12) to calculate the residual error can

also get the same result.
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Figure 9: Plot of time-varying residual error from the two-tier AR-ARX model.

4. Bridge Monitoring Using Eigenvalue Ratio Difference (ERD):

Niu-Dou Bridge
Description of the Niu-Dou Bridge test

Niu-Dou Bridge is located at Yi-Lan County across Lan-Yang River. It is
comprised of two independent bridges at the upstream side and the downstream side.
The upstream side bridge is older than the downstream side one. They are both the
simple support reinforced concrete bridges with 7 spans. Each span is 36.6m. The pier
height is about 10.5m. Photos of Niu-Dou Bridge are shown in Figure 10. The
upstream side bridge suffered severe scouring and the impact from debris flow during
the typhoon season, and its foundations were repaired and strengthened many times in
the past. Niu-Dou Bridge is considered as a dangerous bridge by the authority. The
authority always closed the bridge during the typhoon strike for safety and planed to
dismantle the bridge in 2011.

Starting from April 2010 velocity response data of the upstream side bridge are
collected. VSE-15D sensor was used and the data was transferred through wireless
communication mechanism. The illustration of the sensor location and number are
shown in Figure 10. All sensors are installed upon the bridge deck. Both the vertical
and transverse direction velocity responses were collected. It includes the general
measurement at 2010/04/08, 2010/06/09, 2010/07/23 and 2010/10/12, and the data
during Fanapi Typhoon strike at 2010/09/19 ~ 2010/09/21. The transverse velocity
responses measured from locations of D5 was used for discussion. Figure 11(a) shows
the horizontal velocity time history from sensor at D5. The response amplitude is
larger during the typhoon strike resulting from the wind and high water level during
the typhoon strike. The main objective of the analysis is to study the applicability of
using ERD indicator to identify the abnormal condition of the bridge during the
typhoon strike.

Analysis Result

First, the short-time Fourier transform was used to realize the frequency content

of the measured response. Spectrogram of the recorded velocity time history was

studied (from D5 sensor node), as shown in Figure 11a.
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Figure 10 Photos of Niu-Dou Bridge (a) before and (b) during typhoon strike and (c)

the illustration of the sensor location and number

The window length is 5sec and the hamming window function is used. It is found that

there are several main differences between the normal condition (data measured at
2010/04/08, 2010/06/09, 2010/07/23 and 2010/10/12) and abnormal environmental
conditions (data measured during Fanapi Typhoon strike at 2010/09/19 ~2010/09/21):

1. Under normal environmental condition, the spectrogram property is stable

(time-invariant). The vibration mode at about 3Hz is always dominant. The

modal frequency is not time-variant.

2. Under abnormal

environmental

condition (Typhoon condition),

the

spectrogram property is unstable and variant with time. For example, the

dominant vibration mode changes from about 3Hz mode to 7.5Hz mode for

9/19 D5H data, and higher mode vibration with frequency between 10Hz to
20Hz is excited for 9/20 D5H data.

3. The observed signal frequency is different for different sensor location. This
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Figure 11 (a) Measured velocity response at DSH of Niu-Dou Bridge; (b) Short-time
Fourier transform of measured horizontal velocity response at DSH; (c) Eigenvalue
ratio difference of measured horizontal velocity response at D5H; (d) Eigenvalue ratio
difference of measured horizontal velocity response at DSH for L=5.

may result from the large and complex structural system, which may induce
the local vibration mode.

4. Time-varying system frequency can be found from the measurement in 9/20
(during typhoon) at DI11H. The vibration mode with frequency 3Hz
decreases to 2.5Hz and gradually returns to 3Hz again.

Based on the above observation, we believe that the bridge dynamic
characteristics may change resulting from abnormal environmental condition.
However, we cannot point out the causes of this abnormality definitely. This
abnormality may result from either the nonlinearity, damage of the bridge structure,

applied force characteristics, the scouring of the bridge pier, etc. Other monitoring
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information is still needed to realize the real condition of the bridge.

Figure 11(c) shows ERD result of the velocity time history for different sensor
locations in transverse direction for sensor location D5. The rectangular window is
used and the window length is Ssec. ERD result is stable from the measurements
under normal condition, and variation of critical length can be observed from the
measurements in abnormal environmental condition during 9/19 to 9/21. Figure 19(d)
shows ERD result for the row size of Hankel matrix equal to 5 for sensor location DS5.
This figure also shows two y-axis grids which present the mean plus and minus one
standard deviation of ERD result for the general measurement before the typhoon
strike. The dramatic time variation can still be observed for the abnormal
environmental condition during 9/19 to 9/21. For example, ERD of D5H sensor is
equal to about 90% before and after typhoon strikes. However, its variation from 40%
to 90% can be observed during typhoon strike. ERD result before the typhoon strike is
a little different to ERD result after the typhoon strike for different sensing node. It
means that the bridge system may have permanent change or damage after the
typhoon strike. In contrast to spectrogram result, ERD result provides more clear

information about the variation of bridge characteristics during the typhoon strike.
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