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研究目的 本研究目的為配合所開發之系統識別方法進行實務橋梁結構之

量測，(含定期微振量測及極端環境下之反應量測)，並進行結構

物振動特性之識別，以探討結構物特徵之時變性，並設法在結構

反應量測中予以驗証。其研究將所開發之隨機子空間系統識別軟

體應用於實際橋梁結構物之量測及分析 (應用在宜蘭牛鬥新橋

等之微振量測與分析) 。並建立橋梁結構物之損壞預警系統。 

研究成果 本研究之成果為發展一套有效之結構健康診斷之工具去進行正

在使用中之橋梁模態分析方法 (Operational Model Analysis, 

OMA)，並配合地震反應之量測資料進行損壞檢測。針對橋梁受

常態外力作用 (environmental loading)之連續性反應資料之監



測，以開發在使用中結構模態方式之識別方法，去探討橋梁結構

物之特徵改變量，以做為監測損壞指標之值。其中之系統識別方

法以達到即時(almost real-time)及上線(on-line) 分析方式，對收

集到之量測訊號進行分析。本研究以遞迴性隨機子空間分析法

(Recursive Stochastic Subspace Identification)進行識別，以減少運

算時間，達到即時監測之目的。並整合此分析軟體於無線感測器

內，以進行橋梁結構之微振量測，並配合所分析出之動態特徵達

到對橋梁結構之健康診斷及損壞評估。此報告研究內容包含： 

1. 配合過去兩年內之研究成果(a.無線感應器之製作及在實體

結構上之應用及 b.長期監控系統軟體之開發)，進行於橋梁

結構上進行監測，提升及改善現有橋梁監測系统並配合流域

之監測，以最適化流域監測及橋梁監測之健康診斷模組建置

與測試。 

2. 橋梁之振動量測分析宜蘭牛鬥橋之微振分析及洪水作用下之

反應量測及分析。配合長期結構微振分析，研究Recursive 

Stochastic Subspace Identification (RSSI) 方法，以即

時監測結構振動特性，以進行結構系統識別及損壞預警。 
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計畫摘要概括說明： 

  台灣由於地理環境特殊，經常受到天然災害的襲擊，其中包括地震、颱風、

洪水與土石流等等，因此重要的基礎建設，例如校舍、橋梁、與隧道等等，其安

全性以及耐久性便成為相當重要的議題。以橋梁為例，近年來有許多橋梁在颱風

侵襲期間因為暴漲的溪水或土石流沖蝕，導致橋面板的陷落以及橋體的損壞，造

成人命傷亡與經濟損失。因此當務之急除了針對現有橋梁進行整體安全性評估之

外，將來更需要發展準確與可靠的橋梁監測系統，對橋梁的安全性進行監測，並

在橋梁損害發生與倒塌之前提供預警訊息，以減少人命與經濟的損失。為了實踐

以振動量測為基礎的橋梁安全監測平台，本研究以無線感測模組對宜蘭牛鬥橋進

行長期監測，並採用遞迴性隨機子空間分析法(Recursive Stochastic Subspace 

Identification, RSSI)對收集之量測訊號進行分析，達到即時監測之目的。此外，

本研究建立一套以遞迴式隨機子空間識別法為基礎的橋梁即時監測系統即，並將

其應用於實驗室縮尺橋梁實驗之沖刷試驗，用以驗證此橋梁安全監測平台之可靠

性與穩定性，並收集之量測訊號進行分析，用以開發橋梁監測損壞指標，以達到

預警之目的。 

本研究之目的在發展一套有效之結構健康診斷之工具去進行正在使用中之橋

梁模態分析方法(Operational Model Analysis, OMA)，並配合地震反應之量測資料

進行損壞檢測。針對橋梁受常態外力作用(environmental loading)之連續性反應資

料之監測，以開發在使用中結構模態方式之識別方法，去探討橋梁結構物之特徵

改變量，以做為監測損壞指標之值。其中之系統識別方法以達到即時(almost 

real-time)及上線(on-line) 分析方式，對收集到之量測訊號進行分析。本研究以遞

迴性隨機子空間分析法(Recursive Stochastic Subspace Identification)進行識別，以



減少運算時間，達到即時監測之目的。並整合此分析軟體於無線感測器內，以進

行橋梁結構之微振量測，並配合所分析出之動態特徵達到對橋梁結構之健康診斷

及損壞評估。 

本研究建立了一套完整的橋梁振動監測系統，並於牛鬥橋進行長期監測以驗

證其可行性，收集了長期微振反應，以及洪颱期間與橋墩開挖之反應資料，並利

用目前發展完整與計算精確的遞迴式隨機子空間系統識別法(RSSI)，針對牛鬥橋

的量測資料進行分析，用以來評估牛鬥橋振動特性與環境變化之間的關係。由牛

鬥橋之分析結果來看，雖然我們可以確定，橋梁在洪颱期間的反應明顯較大，且

其振動頻率有下降的趨勢，但是要判斷真正橋梁頻率變化的原因，仍有賴其它監

測項目的配合，例如流速、水位或沖刷深度量測等等。而由牛鬥橋開挖試驗與縮

尺橋樑沖刷試驗的分析結果，可得雖然頻率與模態振形對於局部輕微的橋梁損壞

不是非常敏感，但是對於整體的結構特性改變確實具有偵測的效果，從頻率與模

態振形的變化情形確實可以協助判斷橋梁可能的損壞狀況。 

 

 
1. INTRODUCTION 

Recently during the typhoon season there were several bridges were collapse due to 

heavy storm in Taiwan. For example, in 2000 the collapse of Kao-Ping bridge during 

Typhoon Belis, in 2008 the collapse of Tai-Chung Hou-Fang Bridge, the collapse of 

New-Ming bridge in Pu-Li, the collapse of Wu-Fu-Liao Bridge in Cha-I during and 

the collapse of Cha-Shen bridge in Kao-Shong during the invasion of Typhoon 

Zinglar. The major reason for these collapses of bridges is due to the bridge scoring 

during heavy storm which may induce the settlement of bridge piers and damaged the 

bridge foundation. Bridge was designed with very strong pier in Taiwan and it is 

impossible to have damages caused by the direct impact of flood (except the severe 

debris flow). The major reason for bridge collapse during typhoon and flood is the 

bridge scoring and this scoring may empty the foundation soil and cause the reduction 

of bridge bearing capacity. There are over 150 bridges in Taiwan have this kind of 

potential damage. Therefore it is necessary to develop an early warning system for 

bridge. 

Scour is the result of the erosive action of flowing water, excavating and carrying 

away material from the bed and banks of stream and from around the piers and 

abutments of bridges, and is the primary cause of bridge failures. Scour at a bridge is 

grouped into two categories, local scour and contraction scour [1]. Any obstruction to 

moving water can cause local scour as the flow accelerates around the obstruction. 



Local scour involves removal of material from around piers, abutments, spurs, and 

embankments. Although local scour can occur for any flow condition, it is most 

severe during floods when flow velocities are greatest. Contraction scour occurs 

during floods when water that is spread throughout the floodplain flows through the 

constricted bridge opening. While local scour has limited extent around the 

obstruction, contraction scour can occur over the entire channel and floodplain areas 

under the bridge [2]. 

Because lack of bridge monitoring system as well as the monitoring techniques, 

it is impossible to send an early warning message to close the bridge when severe 

scour is developing. Based on all these damage cases and harsh environmental 

conditions, the following comments are raised: 

1. Upgrade the current bridge monitoring system (including earthquake and flood). 

Optimize the sensor locations and integrate the monitoring system to include river 

basin environmental conditions and bridge vibration. 

2. Develop reliable self-diagnosis monitoring and early warning system, 

3. For bridge monitoring it is necessary to monitor not only the bridge itself but also 

on the river basin (such as the flood water level, scorning monitoring and 

estimation model). 

Feature extraction using response measurements directly provide a fast and a 

direct estimation of structural integrity. There are many nonlinear indicator functions 

which provide a direct measure of structural damage. The classical Fourier spectral 

analysis which involves decomposing a time series into sinusoidal waves of various 

frequencies is one of the feature extraction techniques. If the periodic signal is not of 

sinusoidal form, then the Fourier spectral analysis can not be applied. The short time 

moving window Fourier transform (STFT) gives an inspiration to capture the 

temporal characteristic by utilizing the time-moving window technique. But STFT has 

very poor resolution on time-frequency plane and can not provide a further analysis 

for non-stationary and nonlinear data. Wavelet analysis is then developed with its 

versatility for a better resolution [3, 4]. Wavelet analysis has an adjustable window 

technique which is capable of structural damage detection. It can unveil 

discontinuities masked in response signals or to decompose the original signal into 

several sub-components. The packet wavelet transform (WPT) is, therefore, 

developed to provide further decomposition at detail components [5]. 



The objective of this paper is to develop methodologies on structural health 

monitoring of bridge directly from its vibration measurements under operation 

conditions. Through the output-only measurements, on-line system identification 

algorithm and damage detection methodologies are developed. Verification of these 

methodologies through the large-scale lab test of bridge scouring is conducted. Based 

on the data collected from the experimental scouring test of bridge structure, the 

features of bridge vibration for damage early warning are investigated. 

 

2. EXPERIMENTAL SETUP ON BRIDGE SCOURING TEST 

A four span bridge model with simply supported girder on each pier was constructed 

to across a flume of width 4.0 meter in the hydraulic lab. The span length is about 1.0 

m. The sketch and the dimension of this bridge are shown in Figure 1. The bridge 

piers are embedded in sand with depth of 30 cm. 12 velocity sensors are deployed 

along the bridge deck to collect the vibration signal of the bridge during scouring 

process in transverse direction (along stream line). To focus the major scouring 

phenomenon on one single bridge pier, the major running stream water was guided 

and focuses the scouring effect mainly on the 3rd pier between sensor number 9 and 

10. Photos of the bridge test setup and the scouring test are shown in Figure 2. 

Velocity response data of the bridge during scouring process are collected. Figure 3 

shows data from sensor node #2 and node #9. The VSE-15D sensor is used nad it is a 

servo velocity meter produced by Tokyo Sokushin Co., Ltd. This sensor is very 

sensitive to detect the low level vibration motion and the linear range (0.2Hz~70Hz) 

is suite for SHM applications. The total run time on this bridge scouring test is 200 

min.(12,000 sec). At t=5800 sec and t=7500 sec significant change of vibration 

measurement at pier No.3 had been observed from sensor node No.9. Data acquisition 

system collected all the velocity response of the bridge from all twelve sensors with 

sampling rate of 200 Hz. Camera was also installed in each of the bridge pier to 

observe the scouring phenomenon. Figure 3 also plot the scouring depth from the 

observation. All the test setup will be good for on-line monitoring of the bridge 

structure. As shown in Figure 3 at pier 3 the laying depth (embedment depth of sand, 

i.e. 30 cm) significantly reduced at the beginning of the incoming water as compare to 

the other piers. This si due to the design of the channel to let the scouring 

phenomenon becomes more concentrated on one single pier. 



From the observation of the response measurement in transverse direction (along 

the channel direction) at t=5800ses and at t=7500 sec some abnormal situation were 

happened in the bridge structure. This particular time can be used as an index of sever 

damage of the bridge if one can use these vibration-based monitoring signals. It is 

important to note that if at t=5800 sec some abnormal phenomenon or features from 

the response measurement can be extracted through on-line identification, then these 

features can be used for early warning indices before the significant damage of the 

bridge. Therefore, on-line system identification techniques from using velocity/ 

acceleration response become more meaningful if one can detect the abnormal 

features prior the significant settlement of the bridge pier.  

 

3. METHODOLOGIES OF ON-LINE SYSTEM IDENTIFICATION  
FROM RESPONSE MEASUREMENTS 

In this section three different approaches on on-line monitoring of structural vibration 

data for operation modal analysis will be discussed which include: the Short Time 

Fourier Transform method, the Wigner-Ville transformation and the Recursive 

Subspace Identification algorithm.  

3.1 Short Time Fourier Transform (STFT) 

To investigate the time-varying characteristics of the processed signal (output only), 

time-frequency analysis directly from measurements is adopted. STFT uses windowed 

regular harmonics and function orthogonality to simultaneously extract time-localized 

components. Mathematically, STFT of a signal x(t) can be expressed as: 






 dtetwtxXtxSTFT ti )()(),()}({             (1) 

where w(t) is the window function, commonly a Hamming window or Gaussian "hill" 

centered around zero, and x(t) is the signal to be transformed. The short-time Fourier 

transform (STFT) provides one of the techniques to perform the time-frequency 

analysis of the data. To apply this method to the bridge vibration data the Hamming 

window length is set to 5.0 sec (1000 points), and with moving window of 2.5 sec 

(500 points). Data collected from each sensor was calculated individually and plot the 

time-frequency-amplitude relationship. Figure 4 shows and time-frequency analysis of 

data from sensor No.2 and No.9 by using STFT method. It is interest to know that at 

sec6000t and at sec7500t the significant change of system dominant frequencies  



can be clearly identified. This change of system dominant frequencies is inconsistent 

with the damage of the bridge pier (settlement of bridge pier due to scouring).  

3.2 Time-frequency Wigner Ville Transformation  

A time-frequency transformation, which does not possess the disadvantage of an 

additional window, is the Wigner-Ville transformation :),( tW [6] 

  detxtxtW if
xx

2)2()2(),(                   (2) 

It was presented as a two-dimensional density function. Figure 5 shows the 

Wigner-Ville transformation of signals from record at sensor Node 2 and Node 3. the 

results from this time-frequency analysis show a better resolution than the STFT.    

3.3 Recursive Stochastic subspace Identification (RSSI) 

The recursive stochastic subspace identification (RSSI) algorithm is used for 

conducting operational model analysis through output-only measurements (or ambient 

vibration). A new RSSI algorithm has been proposed to avoid the use of singular 

value decomposition [7, 8]. These algorithm consist of two steps: (1) update the LQ 

decomposition; (2) update the column space of extended observability matrix. The 

first step implies that the LQ decomposition needs to be updated as long as there is a 

new set of data provided. The  

second step on updating algorithm was proposed how to update the LQ decomposition  

when appending only one column to block Hankel matrix. To speed up the 

computation for on-line and almost real time computation, an advanced algorithm to 

update the LQ decomposition when appending more than one column to block Hankel 

matrix will be proposed. Procedures for recursive subspace identification are 

described as follows: 

1. To compute the LQ decomposition for the recursive subspace identification 

algorithm the Givens transformations is used. 

2. Considering the recursive identification procedure the new sampling data with the 

length of  columns need to be added to the block Hankel matrix,  . In order 

to remain the same size of Hankel matrix the old data with equivalent length needs 

to be eliminated. 

3. For recursive identification with p-appended data points the update LQ 

decomposition used the Givens rotation twice at one turn. The second Givens 

rotation was applied to transform the temporary decomposition into the real LQ 



decomposition. 

Through this process there is no need to conduct the LQ decomposition on the new 

Hankel matrix for each recursive procedure which can reduce the computation time to 

extract the system dynamic characteristics. Detail calculation of RSSI can be found in 

reference [9]. Figure 6 shows The relationship between the data in moving time 

window and the required computation time for each data set.  

It is important to note that to extract the system dynamic characteristics from the 

observation matrix, distinguish the true modes from the noise modes becomes a very 

critical issue. The system order n  based on the singular value decomposition (SVD) 

of observation matrix 
iΟ  was first determined. Through the use of singular value 

decomposition (SVD) the system order n can be determined from the singular value 

greater than the assign value. Then output modal accuracy correlation (OMAC) and 

weighted phase error (WPE) procedures can sequentially be used, and the true modes 

can be distinguished from the noise modes [10]. Figure 7 shows the identified 

time-varying system natural frequencies of the bridge structure by considering all the 

measurements from the deck to form the data Hankel matrix for RSSI. It is observed 

that the change of system dominant frequencies in relating to the scouring depth and 

the pier settlements is closely related. It is important to pointed out that prior to the 

t=7800 sec (significant settlement at pier No.3) the change of system dominant 

frequencies can be observed. 

The above three time-frequency analyses, STFT, WVD and RSSI, are all in 

relating to on-line data processing technique. From these analyses a clear picture of 

time-varying system natural frequencies can be identified. The fundamental frequency 

of the bridge system was changed from 12 Hz to 7.0 Hz where significant settlement 

was occurred. These change of system frequencies are in relating the effect of 

scouring depth. Scouring may change the boundary condition of the bridge pier which 

may cause the degradation of system natural frequencies. For setting an early warning 

system on the endangerment of bridge due to scouring, besides the RSSI, more 

features need to be explored before the significant change of system natural 

frequencies. 

 
4. DAMAGE DETECTION AND LOCALIZATION 

Different from the detection of time-varying system natural frequencies, more 



significant features which can not only identify the damage nut also detect the damage 

locations need to be explored. Through vibration-based monitoring data the on-line 

damage location was investigated.  

4.1 Application of Cross-correlation Function Amplitude Vector 

     To avoid the limitation of the model-based damage detection techniques and 

considering the need of on-line damage detection, the concept of cross correlation 

analysis can be used. One simple approach is to test the cross-correlation from two 

measurements at the same time. Consider two random signals the correlation, 

)()( txandtx ik , the correlation coefficient between these two signals is defined as: 
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where “T” is the time window selected for estimating the correlation coefficient. It is 

believed that for an intact structural system the correlation coefficient kj  between 

two measurement nodes, k and j, should be higher than the damage structure. Suppose 

more than two measurements are taken the concept of cross correlation function 

amplitude vector (CorV) of the responses of a structure can be used [11]. It is defined 

the CorV as: 

}{ 321 knkkk rrrr CorV                    (4) 

where klr  is the maximum value of the cross correlation function between 
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Since that the CorV is a vector, so it can be normalized as follows: 
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It is believed that the correlation coefficient between the measurement locations 

)()( txandtx ik in a structure should be close to one if the structure is not damage. 

Otherwise, the correlation coefficient will be low if damage occurred in the structure. 

In order to identify and quantify such a damage that occurred in the structure the 

correlation between two CorV’s is defined: 
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where CorV (j) and CorV*(j) indicate the correlation coefficient of two different 

state, one is the reference state and other is the damaged state (or data calculated from 

different time period to express the different situation to the reference state). Higher 

CVAC value indicates higher correlation between the two states.    

   From the monitoring data of bridge scouring test, first, using Eq.(3), the 

correlation coefficient between two measurement locations is calculated. It is assumed 

that data from the sensor location No.1 is considered as the reference measurement. 

For a fix time window the correlation coefficient between the monitoring data from 

the reference location and the other measurement location can be generated. 

Correlation coefficient with moving time window of 20.0 sec, is generated and shown 

in Figure 8. It is observed that a significant drop of correlation coefficient with respect 

to the reference measurement location (sensor No.1) was observed at time t=7800 sec. 

which is in consistent with the results from time-frequency analysis. the abnormal of 

correlation coefficient was also observed between t=6000 sec and t=7800 sec. Based 

on Eq.(7) CVAC was also calculated with respect to different reference data 

(measurement location). Figure 9 shows the calculated CVAC as a function of time by 

considering two different sensing nodes as references. A moving time window with 

time window of 20 sec was used. The first time window set of the data will be used as 

the undamaged set of data (or reference). From CVAC value one can detect the 

abnormal change of CVAC starting at t=6000. sec. which was identified as the prior 

information (or early warning  

message) to the significant change of CVAC which occurred at t=7500 sec. No matter 

which location was selected as the reference sensor node the CVAC value can still 

detect the damage. It is important to note that the CVAC can provide an early warning 

message before the significant change of the system dynamic characteristics (such as 

the dramatic drop of system dominant natural frequency).  

4.2 Application of Proper Orthogonal Decomposition (POD) 

   Proper orthogonal decomposition is a procedure for extracting a basis for a modal 

decomposition from an ensemble of signals. If the response signal )(tqk of a discrete 

dynamic system with m degree of freedom (d.o.f.) are sampled n times and if the 

matrix Q is defined as 
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Then the proper orthogonal modes are the eigenvector of   T

n QQG 1 , and the 

corresponding eigenvalues are the proper orthogonal values. It had been proved that 

POMs are related to the vibration eigenmodes in some cases. Therefore, the POD 

should be an alternative way of modal analysis for extracting the mode shapes of a 

dynamic system. The POD was applied to the dynamic response data collected from 

the measurements of the bridge scouring test. Figure 10a shows the calculated 

time-varying first eigenmode. To evaluate the change of eigenmode along the time 

sequence, the initial calculated eigenmode was selected as the reference one; and then 

the root-mean-square error of the difference between the reference 1st eigenmode and 

the eigenmode calculated from different time window is generated, as shown in 

Figure 10b. The same analysis can also be calculated using the 2nd mode information, 

as shown in Figures 11a and 11b. It is observed that the abrupt change of time can be 

identified.             

4.3 Damage Detection from Novelty Analysis 

Different from the CVAC analysis, to conduct the structural damage diagnosis, based 

on the undamaged data the structural system matrix was estimated as a reference state.  

First, the reference data set was collected and the SSI algorithm was applied to 

estimate the undamaged state of the structural system. Based on the reference data set 

(the 1st initial data set is assumed as the reference data), the SSI method is applied to 

identify the undamaged system transition matrices kk /1Φ which can be computed by 

exploiting the shift structure of the extended observability matrix. 

The novelty analysis on system’s dynamic responses is used to determine the bias 

of the predict responses if the system significantly deviates from initial baseline 

condition. The idea is to examine if the Kalman prediction model identified from the 

reference state data can be applied to newly measured data. Residual error can be 

estimated by comparing the predicted responses with the measured ones. The k-step 

state vector and the corresponding prediction error are calculated as: 

                            kkkkkk XMYYYe ˆˆ                   (8) 

From the prediction error vectors ke 	 at any k-th sampling point, the Novelty index 



(NI) is defined as either Euclidean Norm or Mahalanobis Norm [12]: 

Euclidean Norm:    k
E

k eNI                               (9a) 

Mahalanobis Norm:  k
T
k

M
k eeNI 1  with NT /yy        (9b) 

The prediction procedure is performed using the data from the reference and actual 

states of the structure respectively. In the absence of damage, the level of prediction 

errors should remain unchanged. Otherwise, the Novelty index will change 

significantly for the damage case. Besides, the outlier statistical analysis, such as 

mean and standard deviation of NI, can also give a quantitative assessment of 

damage. 

In Novelty analysis the identified system transition matrix needs to be estimated in 

advance, and the ordinary Kalman filter can be used to predict the sate. The Kalman 

filter, in estimating the state consists of two estimates of the state 1kX : (1) a 

predicted estimate kk /1
ˆ

X  of the state 1kX  based on information up to the time 

tkt   (consisting of observations kYY ,,1  ); and (2) an update estimate 

1/1
ˆ

 kkX which is obtained at time tkt  )1(  when a new measurement 1kY  is 

observed. For damage estimation the difference between the predicted estimate of 

state vector, kkkk XΦX ˆˆ
/11    and the measurements is calculated. Recursive 

processing of the measurement data is applied through compute the predicted state 

and predict the observation 1kY and compute the update state. For damage 

assessment only the predicted measurements are used, the computed update state is 

only for the estimation of Kalman gain and the prediction error covariance.  

To perform the Novelty analysis using the response measurement of bridge 

during scouring process, signals collected from all sensors (12 sensing nodes) are 

collected to form the Hankel matrix with dimension of ]79001200[  . The time 

window is set to 40 sec. and with moving window of 40 sec. the first time segment 

will be used as the undamaged case. Figures 12a and 12b show the plot of the mean 

value of Euclidean Norm from each window was calculated from sensor node No.2 

and No.9 respectively. It is observed that the mean value of Norm for each time 

window increase significantly at t=6000 sec. (particularly for data from sensor No.9 

node) which was identified before the significant change of system dominant 

frequency. Comparison among the results from RSSI, Novelty analysis and the 



vertical deformation measurement at Pier No.3, one can detect the abnormal features 

from the vibration measurement before the significant settlement of bridge pier 

occurred. This Novelty analysis can also be used for early warning index.       

4.4 Singular Spectrum Analysis for damage detection and early warning 

The use of singular spectrum analysis is discussed as an alternative to traditional 

digital filtering method. Its usefulness has been proven in the analysis of climate and 

geophysical time series. A description of the method will be given in this session. SSA 

procedure consists of four steps: (1) embedding, (2) singular value decomposition 

(SVD), (3) grouping, and (4) reconstruction. The detail description of each step is 

shown in formal terms as follows [13, 14]: 

Step1: Embedding         The method starts to produce a Hankel matrix from the 

time series itself by sliding a window that is shorter in length than the original series. 

Firstly, let ),,,( 110  NfffF   be the time series of length N. And let L be the 

window length, which is an integer in 1< L<N. Each sliding window vector Xj with 

length of L would then be derived: Xj =( fj-1, fj , …, fj+L-2 )
T, j = 1, 2, …, K, where K 

=N-L+1 is the number of columns. The matrix X = [X1, X2, …, XK] is a Hankel 

matrix (or called trajectory matrix) since all elements in diagonal i+j=constant are 

equal. 
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Step2: SVD of the Hankel matrix        The Hankel matrix can be represented in 

the form: X = E1+ E2+…+ Ed, where d is the number of non-zero eigenvalues of 

the LL  matrix S = X．XT. The i-th elementary matrix, or called i-th eigentriple, are 

given by Ei =
i Ui Vi

T, where d ...,, 21  are the non-zero eigenvalues of S, in 

descending order, U1, U2, …, Ud are the corresponding eigenvectors, and vectors Vi 

are derived by Vi=XT．Ui/ i , i=1, 2, …,d. The plot of the eigenvalues in descending 

order is called the singular spectrum and is essential in deciding the index from where 

to truncate the summation.  

Step3: Grouping        This step is to decide a parameter r to reconstruct an 

approximate matrix of X, i.e. X ≈ E1+ E2+…+ Er. The decision making procedure 



may varied depending on the objectives of users. For example, if one intends to derive 

the tendency of the structural response displacement, by which the residual 

displacement may be clearly indicated, r would be decided as 1, namely the first 

leading eigentriple.   

Step4: Reconstruction           The approximate matrix is no longer a Hankel 

matrix, but an approximated time series may be recovered by taking the average of 

the diagonals. It is practical to recover the elementary time series for each elementary 

matrix. These elementary time series (g0, g1, …, gN-1) is also called the principal 

component. If yij is used to represent the i-th row and j-th column element in any 

elementary matrix E, the reconstruction algorithm for each principal component can 

be formulated as follows: 
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where R=min(L,K), P=max(L,K). The smoothed time series is obtained by adding the 

first r principal components. 

   With the concept of moving window (window length=40 sec) the data Hankel 

matrix was formed. This analysis can be done either for each sensing node or from all 

recorded sensing nodes. Through SVD the on the data Hankel matrix and eigenvalues 

were calculated. Figure 13a shows the difference between the first two largest 

eigenvalues from each of the sensing node. This figure shows that prior to the 

significant settlement of the bridge pier No.3 at 7=7800 sec, the distinct feature of the 

difference between two largest eigenvalues can be identified ( at about t=6000 sec). 

This feature can be served as an index for early warning. This difference on the first 

two largest eigenvalues can also be calculate from all set of measurements instead of 

using data from a single sensing node, as shown in Figure 13b (plot in log sacle). 

Through the reconstruction process of signal in SSA by using only the first two largest 

eigenvales, comparison between the original signal and the reconstructed signal was 

made. The reconstruction is using the moving window technique by selecting the time 

window of 40 sec and with moving window of 40 sec. The size of the Hankel matrix 

is set to 6007951. The root-mean-square (RMS) error between the reconstructed and 



recorded signal is plotted and shown in Figure 14. It is observed that the RMS error of 

the sensor signal from node 9 shows a significant change (around t=5800 sec) before 

the large settlement occurred. This indication can also provide an early warning index.     

5 FIELD EXPERIMENTS 

Based on the proposed RSSI-DATA method, applications of the methodology to field 

test data are conducted. Two field experimental data were collected for this analysis:  

a. Vibration measurement of the Nu-Dou old bridge before and during the flood 

(typhoon) period. 

b. Vibration measurement of New Nu-Dow bridge during and after the typhoon 

period. 

Discussions on the results of experiments are shown below: 

   Wireless communication system for data transmission is used in this experiment, 

as shown in Figure 15. Figure 16 shows the sketch of the bridge. On Sept. 19, 2010 

Fananpi typhoon invading I-Lan area. Significan rainfall was observed in the northern 

part of Taiwan. Figure 17 shows the photo of the bridge in its normal weather 

condition and in its typhoon period. Application of RSSI-Data to the measurements is 

conducted during the flood period and after the flood was gone.  RSSI-DATA 

method was applied to the recorded data from sensor node D5H and D14H. It is 

observed that time-varying system natural frequencies were observed from the data at 

sensor node D14H, as shown in Figure 18. If the recorded data is re-arranged, as 

shown in Figure 19, the proposed indices for detection the change of system natural 

frequencies can also be applied. Figures 20 and 21 show the same analysis of using 

STFT, WVD, Euclidean norm and percentage change of the 1st and 2nd singular 

spectrum. It is clearly observed that all these indices can detect the change of 

abnormal condition from the measurements. The old Nu-Dow bridge was tear down 

due to the newly constructed bridge in its upper stream.  

On October 4, 2011, water level at the new Nu-Dow bridge becomes quite high 

due the heavy rainfall in mountain area of the upper stream. Five sensors were 

deployed on the new bridge to measure the vibration of the bridge during severe 

stream flow, as shown in Figure 22. The marked water level during the heavy rainfall 

induced stream water is at 204.0 meter. On October 13 the water level was dropt to its 

normal condition, i.e. at 202.7 meter. Figure 23 shows the recorded vibration data of 

the bridge: one is at the high water level and the other one is at low water level. 



SSI-COV was used to identify the system natural frequencies of the bridge under two 

different operational measurements. Stability diagram is constructed, as shown in 

Figure 24. It is observed that no change on the system natural frequencies from these 

two measurements, except that some frequencies can not be detected under the 

abnormal loading condition.     

CONCLUSIONS 

 

Development of structural diagnostic approaches, in-service monitoring of structures 

with sensor networks may serve an important tool to identify the system modal 

parameters automatically and evaluate operational health of structures during normal 

operation condition. Damage detection algorithms depend on the accuracy of the 

modal parameters estimates and the success of on-line structural health monitoring 

and damage detection on feature extraction from response data. The main objective of 

this study on structural health monitoring (SHM) for bridge structure during scouring 

process is to identify the features from the in-situ operational condition and to detect 

the changes when damage occurred. Through the experimental study of bridge 

damage due to scouring the feature extraction techniques were derived and verified. 

The feature extraction techniques on time-frequency analysis include: 

1. Short Time Fourier Transform, 

2. Wigner-Ville distribution, 

3. Recursive Stochastic Subspace Identification   

These three methods can be applied for on-line feature extraction, and on the 

identification of time-varying system frequencies. With suitable selection of model 

parameters one can conduct these analysis in almost real time analysis.  

   As for damage detection and early warning, distinct feature will be extracted from 

measurements before the severe damage occurred. Four methods are proposed in this 

study:  

1. Moving time window cross-correlation coefficient, )0,(,  Xjk


  

2. Generate correlation coefficient between damaged and undamaged 

cross-correlation function amplitude vector, CVAC. 

3. Conduct Novelty analysis to compare the difference between the measurement and 

the estimated response through Kelman estimator by using the undamaged system 



matrix generated from SSI analysis. 

4. Difference on the eigenvalues from the Singular Spectrum Analysis. 

Through the experimental study on bridge damage caused by scouring in the 

laboratory, the time-varying dynamic characteristics and the damage features of the 

bridge can be identified. It is possible to detect the abnormal situation (or features) 

from the response measurements before the significant damage occurred. 

 

 

 

Appendix: Mathematical background of RSSI-DATA 

A1. THE CLASSICAL SUBSPACE IDENTIFICATION ALGORITH 

Consider a discrete time state-space dynamic system with n DOFs. The system 

equation can be represented as [15]: 

                           (1a) 

                                                             

                              (1b) 

with .  is 

called the discrete-time state matrix,  is the discrete-time input matrix, 

 is the discrete-time state vector,  is the sample time and .   

 is the process noise due to disturbances or modeling error and 

 is the measurement noise due to disturbances or sensor error. For white 

noise excitation Eq.1 can be replaced by the discrete-time stochastic state space model 

[15]: 

                           (2a) 

                              (2b)  

where  are white noises in stochastic system. The superscript 

“s” means “stochastic” and it implicates that the system is excited by stochastic 

component (noise). 

Stochastic Subspace Identification (SSI) using output-only measurement 



In stochastic system, using stochastic subspace identification algorithm, the 

output Hankel matrix can be constructed from the output data and defined as: 

                (3) 

where  is the number of block rows which is a user-defined index and must be larger 

than the order  of the system. Since there are only  DOFs measured, the output 

Hankel matrix must contain  rows.  is the number of block columns of the 

output Hankel matrix. If the sampling length is equal to  then the number  should 

be equal to  so that all data are used for analysis. The main theorem of 

stochastic subspace identification implicates that the extended observability matrix  

can be found from the result of orthogonal projection. The orthogonal projection can 

be easily expressed in terms of the following LQ decomposition: 

       (4a) 

and                                                                 

                        (4b) 

where  is partitions of the lower triangular matrix from LQ decomposition,  is 

the partitions of the orthogonal matrix. This implicates the column space of the 

extended observability matrix  can be obtained from the column space of . 

Once  are obtained from the LQ decomposition of the orthogonal projection, the 

system parameters can be determined. 

Subspace Identification (SI) using Both Input & Output Measurements 

The equation, shown in Eq.1, are also named as a discrete-time combined 

deterministic-stochastic system because it is a combination of a deterministic system 

and a stochastic system by combining the state  and output  individually. 

Similarly, the input data  can be arranged in the Hankel matrix: 

               



      (5) 

where  is the past input Hankel matrix and  is the future 

input Hankel matrix. The matrices  and  are defined 

by shifting the border between  and  one block row down. Moreover, two 

special Hankel matrices consisting of both input and output data are defined as [15]:  

                                          

               (6) 

The deterministic state  is also divided into past and future parts: 

  (7) 

From these definitions, the combined deterministic-stochastic model can be 

transformed into matrix equations [15]: 

  

                        (8) 

  

with 

   (9) 

                  (10) 

where  is the low block triangular Toeplitz matrix and  is the reversed 

extended controllability matrix. In above equations, the contribution of the 

deterministic model is described manifestly and the matrices  and  substitute 

the contribution of the stochastic model. If the modal properties (natural frequency, 



damping ratio and mode shape) of the structure are needed, the “Multivariable 

Output-Error State Space” algorithm (MOESP) can be employed to extract the 

column space of the extended observability matrix  from the LQ decomposition of 

the Hankel matrix [15]: 

            (11) 

And                                              

                      (12) 

                

Finally, only  factor is needed for system identification. Once  are obtained 

from the LQ decomposition of the Hankel matrix in Eq.(11), t the singular value 

decomposition can be performed, as shown below: 

                                          

          (13) 

                         (14) 

 and  can be determined from  and the modal properties of the system 

can finally be identified. 

A2. RECURSIVE SUBSPACE IDENTIFICATION 

One of the advantages of the subspace identification algorithms lies in the use of 

singular value decomposition (SVD) and LQ decomposition which lead to the stability 

and reliability of this technique. However, the traditional subspace identification is not 

suitable for on-line computation because the computational complexity of SVD. To detect 

the time-varying system the recursive system identification needs to be developed. 

Several recursive subspace identification algorithms have been proposed to avoid the use 

of singular value decomposition [16, 17]. These algorithms always consist of two steps: (1) 

update the LQ decomposition; (2) update the column space of extended observability 

matrix. The first step implies that the LQ decomposition needs to be updated as long as 

there is a new set of data provided. The second step on updating algorithm was proposed 

how to update the LQ decomposition when appending only one column to block Hankel 

matrix. To speed up the computation for on-line and almost real time computation, an 



advanced algorithm to update the LQ decomposition when appending more than one 

column to block Hankel matrix will be proposed. Procedures for recursive subspace 

identification are described as follows: 

A. LQ Decomposition and Given Rotations 

Consider the LQ decomposition of a matrix  is given by: 

                                 (15) 

where  is a lower triangular matrix and  is an orthogonal matrix 

( ). It is assumed  which meets the size of the Hankel matrix in 

the subspace algorithms. As the right  columns of  consist entirely of 

zeroes, Eq.(15) can be partitioned as: 

                  (16) 

where  is a  lower triangular matrix, ,  and 

 and  both have orthogonal rows.  is called the thin LQ 

decomposition of . If  has full rank  and it requires that the diagonal elements 

of  are positive and  and  are unique, but in general  is not.  

To compute the LQ decomposition for the recursive subspace identification 

algorithms the Givens transformations is used. A Givens rotation is defined as a 

matrix of the form [19]: 

   (17) 

with . That is, a Givens rotation matrix is an identity matrix with the following 

substitutions: 

       (17a) 

The product  represents a counterclockwise rotation of the column vector 

 in the  coordinate plane of  radians and the Givens rotation  is 



clearly an orthogonal matrix since . It is easy to zero a selected entry  in 

the column vector  by multiplying a specific Givens rotation to : 

    (18)   

with , , and . To introduce zeros in a 

matrix  and make it to become a lower triangular matrix , the 

matrix  should be multiplied by a series of Given rotations at its right side: 

                         (19) 

The dimension of the Givens rotation  is equal to . Eq.(19) can then be 

represented as the LQ decomposition of : 

Let                                              (20) 

and                                                            

                          (21) 

Therefore, a matrix can be transformed into a lower triangular matrix through 

multiplying a series of Givens rotation. 

B. Form the Block Hankel Matrix 

In the output-only SSI the observability matrix  can be extracted from the 

output block Hankel matrix by using the LQ decomposition and the singular value 

decomposition: 

         

                       (22) 
Similar procedure for the input/output SI was proposed in the Multivariable 

Output-Error State Space (MOESP) algorithm as [15]: 

 

              (23) 

In this study a new form of block Hankel matrix was proposed for the recursive 

subspace identification. In the beginning, the block Hankel matrix in Eq.(23) is 

redefined as: 



           (24) 

where  is a block Hankel matrix consist of the columns vectors  and 

each column vector  contains the input and output data as: 

    (25) 

As mentioned in Eq.(24) if  is a rectangular matrix and , the right 

 columns of the lower triangular matrix form the LQ decomposition 

of  will consist entirely of zeroes. It is useless to compute the excess orthogonal 

rows (as  in Eq.(16)) because only the first  columns of the lower 

triangular matrix is needed to ensuing singular value decomposition. It is feasible to 

save time by producing an “economic-size” decomposition. Therefore, this study 

yields the square matrix of   to avoid wasting the computation time by giving a 

relationship between the sampling length r (or now, the length of moving window for 

updating the LQ decomposition) and the number of block rows i in square matrix 

: 

          (26) 

From Eq.(26), if the number of input “m” and the number of output “l” are both fixed, 

then “r” can be determined by assigning the number of block rows “i”. Since now 

 is a square matrix, the LQ decomposition of  can be defined as: 

                         (27) 

where  is a square and lower triangular matrix and  is also 

square and orthogonal matrix.  

Based on the result of LQ decomposition of Hankel matrix , firstly, a Givens 

rotations  is used to transform the first  columns of  into an upper triangular 

matrix: 

                        (28) 



where  is an upper triangular matrix. Since  and  are both 

orthogonal, the product of them must be orthogonal: 

          (29) 

Based on the criteria of Eq.(29), it can be proved that   and , then 

Eq.(28) can be replaced by: 

                              (30) 

From the first data set, by using the Givens rotation , the LQ decomposition of 

block Hankel matrix , as shown in Eq.(27), can be replaced as: 

   (31) 

From which  and can be estimated through the Givens rotation of , 

respectively. 

C. Methodology for Recursive Computation 

To consider the recursive identification procedure, if the new sampling data with 

the length of  are added to the block Hankel matrix  , the old data with 

equivalent length will be eliminated. The updated block Hankel matrix and its LQ 

decomposition is re-defined as: 

               (32) 

How to compute the new decomposition  by using the new sampling data 

and the old decomposition results, , is the crucial issue in recursive 

identification.  

The Givens rotations  actually decouples the LQ decomposition of  that 

the first  columns of  is returned to the original form of block Hankel matrix  

. Remove   from  , Eq.(32) implies the remains can be represent as: 

                     (33) 

where  is orthogonal, and  is close to be a lower triangular matrix. To 

accommodate the recursive procedure, the new data set  is appended to the 

remains: 



 

            (34) 

where  is orthogonal, and  is close to be a lower triangular matrix. To make 

Eq.(34) become a complete LQ decomposition the Givens rotations  is used again 

to transform the  

 into a real lower triangular matrix : 

                 (35) 

For recursive identification with p-shift data point, Figure A1 show the summary of 

the related equations which were used in two consecutive time window.  In summary, 

the first Givens rotations  decoupled the old LQ decomposition so that the old 

data can be deleted. After appending the new data, the second Givens rotations  as 

applied which make the temporary decomposition become a real LQ decomposition. 

Moreover, a forgetting factor μ can also be used to improve the convergence of the 

recursive subspace identification by multiplying it to the past data sets in Eq.(34): 

                      (36) 

The implementation of forgetting factor is to use the concept of fading memory by 

decreasing the weight of data points which were away from the current data. The idea 

of fading memory on the previous data can be used especially to detect the abrupt 

change of system modal parameters. For example, if the length of moving window is 

assumed as  and the shifting length is 

 (r and p indicate the number of data point), and the 

forgetting factor can be determined from  with μ=0.9330, and then the 

weighting factor can be calculated and applied to the data set of the specified time 

window, as shown in Figure A2.  

 



 

Figure A1: Correlation of Hankel matrix in recursive formulation from Data Set 1  

to Data Set 2 (with shift p step).  
 

 

Figure A2: Weighting factor for window length of 6 sec. applied on data between 15 

sec and 21 sec. 
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Fig.1: Sketch and dimension of the bridge test specimen  

 

  

 

   Fig. 2: Photos of the bridge test site and the test specimen, (a) before scouring test, 

(b) under scouring test, (c) after scouring test. 



 

  

 
 

Fig. 3: Recorded velocity response from node 1 and node 9 from the bridge scouring 

test on date 2011-01-26. The observation of scouring depth from each pier is 

also plotted for comparison. 

 

 

 

 

 

 

 

 



 

 

  
Fig. 4: Time-frequency analysis from data at node 1 and node 9 by using STFT  

 

 

   

Fig. 5: Wigner-Ville transformation of signals from record at sensor Node 2 and Node 
9 
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Fig. 6: The relationship between the data in moving time window and the  

          required computation time for each data set. 

 

 

 

Fig. 7: Identified time-varying system natural frequencies using RSSI algorithm 

(Window length = 5 (sec) OMAC=0.98, SVD=0.15, N_row=50).   
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Fig. 8: Plot the correlation coefficient with respect to sensor location and time 

(use sensor 1 data as the reference) 

 

 

 

Fig.9: Plot of CVAC with respect to time; (a) consider sensor node No.1 as a 

reference, (b) consider sensor node No.6 as a reference  

 

 



 

 

Fig. 10a: Calculated 1st eigenmode from Proper Orthogoanl Decomposition. 

 

 

Fig. 10b: Root-mean-square value of the difference between reference 

eigenmode and the eigenmode calculated from different time window.  

 

 



 

 

Fig.11a: Calculated 2nd eigenmode from Proper Orthogoanl Decomposition. 

 

Fig. 11b: Root-mean-square value of the difference between reference eigenmode  

and the eigenmode calculated from different time window.  

 

 

 



 

 

 

 

 

Fig. 12: Mean value of time-varying Euclidean Norm;  

        (a) response at Node 2, and (b) response at Node 9.  

 

 



 

 

Fig. 13a: Difference between the 1st and 2nd eigenvalue-ratio from Singular 

Spectrum Analysis on each measurement (for Nodes 3, 6, and 9). 

 

 

 Fig. 13b:Difference between the 1st and 2nd eigenvalue from Singular Spectrum 

Analysis on all set of measurements. 

 



 

 

 
Fig. 14: Plot of RMS error between the measurement and the prediction using  

     the reconstruction (from the two largest eigen values) wave forms of SSA.   

 

 

Figure 15: Wireless data communication setup for field ambient vibration 

measurements.  



 

 
 

Figure 16: The sensor locations along the bridge deck are also shown (in transverse 

direction) 

 
 

 
Figure 17: Photos of the Nu-Dow old bridge before and during the typhoon period. 

 



 

Figure 18: Identified time-varying system natural frequencies from sensor nodes of 

D05 and D14. Before and during the typhoon period. 

 
 

 

Figure 19: Plot the re-arrange the recorded data from sensor node 5 (by putting the  

data during and after typhoon period back to back). 



 
Figure 20: Result from STFT and WVD analyses on the re-arranged data  

from Figure 18. 

 

Figure 21: (a) Plot of time-varying Euclidean norm from data at Node 5 and Node 14. 

         (b) Plot of time-varying differences between 1st and 2nd singular spectrum,   

(c) Plot of RMS error at node 5 and node 14 from singular spectrum  

analysis.   



 

Figure 22. Location of sensors in the New Nu-Dow bridge during flood (on 

2011-10-3) 

 

 

 

Figure 23. Recorded acceleration on the new Nu-Dow bridge on 2011-10-2 (flood 

period with high water level) and on 2011-10-18 (normal water level) 



 

Figure 24. Stability diagram of the identified structural dominant frequencies from 

measurements of two different periods (normal vs. flood period).  


