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1. INTRODUCTION

Recently during the typhoon season there were several bridges were collapse due to
heavy storm in Taiwan. For example, in 2000 the collapse of Kao-Ping bridge during
Typhoon Belis, in 2008 the collapse of Tai-Chung Hou-Fang Bridge, the collapse of
New-Ming bridge in Pu-Li, the collapse of Wu-Fu-Liao Bridge in Cha-I during and
the collapse of Cha-Shen bridge in Kao-Shong during the invasion of Typhoon
Zinglar. The major reason for these collapses of bridges is due to the bridge scoring
during heavy storm which may induce the settlement of bridge piers and damaged the
bridge foundation. Bridge was designed with very strong pier in Taiwan and it is
impossible to have damages caused by the direct impact of flood (except the severe
debris flow). The major reason for bridge collapse during typhoon and flood is the
bridge scoring and this scoring may empty the foundation soil and cause the reduction
of bridge bearing capacity. There are over 150 bridges in Taiwan have this kind of
potential damage. Therefore it is necessary to develop an early warning system for
bridge.

Scour is the result of the erosive action of flowing water, excavating and carrying
away material from the bed and banks of stream and from around the piers and
abutments of bridges, and is the primary cause of bridge failures. Scour at a bridge is
grouped into two categories, local scour and contraction scour [1]. Any obstruction to

moving water can cause local scour as the flow accelerates around the obstruction.



Local scour involves removal of material from around piers, abutments, spurs, and
embankments. Although local scour can occur for any flow condition, it is most
severe during floods when flow velocities are greatest. Contraction scour occurs
during floods when water that is spread throughout the floodplain flows through the
constricted bridge opening. While local scour has limited extent around the
obstruction, contraction scour can occur over the entire channel and floodplain areas
under the bridge [2].

Because lack of bridge monitoring system as well as the monitoring techniques,
it is impossible to send an early warning message to close the bridge when severe
scour is developing. Based on all these damage cases and harsh environmental
conditions, the following comments are raised:

1. Upgrade the current bridge monitoring system (including earthquake and flood).
Optimize the sensor locations and integrate the monitoring system to include river
basin environmental conditions and bridge vibration.

2. Develop reliable self-diagnosis monitoring and early warning system,

3. For bridge monitoring it is necessary to monitor not only the bridge itself but also
on the river basin (such as the flood water level, scorning monitoring and
estimation model).

Feature extraction using response measurements directly provide a fast and a
direct estimation of structural integrity. There are many nonlinear indicator functions
which provide a direct measure of structural damage. The classical Fourier spectral
analysis which involves decomposing a time series into sinusoidal waves of various
frequencies is one of the feature extraction techniques. If the periodic signal is not of
sinusoidal form, then the Fourier spectral analysis can not be applied. The short time
moving window Fourier transform (STFT) gives an inspiration to capture the
temporal characteristic by utilizing the time-moving window technique. But STFT has
very poor resolution on time-frequency plane and can not provide a further analysis
for non-stationary and nonlinear data. Wavelet analysis is then developed with its
versatility for a better resolution [3, 4]. Wavelet analysis has an adjustable window
technique which is capable of structural damage detection. It can unveil
discontinuities masked in response signals or to decompose the original signal into
several sub-components. The packet wavelet transform (WPT) is, therefore,

developed to provide further decomposition at detail components [5].



The objective of this paper is to develop methodologies on structural health
monitoring of bridge directly from its vibration measurements under operation
conditions. Through the output-only measurements, on-line system identification
algorithm and damage detection methodologies are developed. Verification of these
methodologies through the large-scale lab test of bridge scouring is conducted. Based
on the data collected from the experimental scouring test of bridge structure, the

features of bridge vibration for damage early warning are investigated.

2. EXPERIMENTAL SETUP ON BRIDGE SCOURING TEST

A four span bridge model with simply supported girder on each pier was constructed
to across a flume of width 4.0 meter in the hydraulic lab. The span length is about 1.0
m. The sketch and the dimension of this bridge are shown in Figure 1. The bridge
piers are embedded in sand with depth of 30 cm. 12 velocity sensors are deployed
along the bridge deck to collect the vibration signal of the bridge during scouring
process in transverse direction (along stream line). To focus the major scouring
phenomenon on one single bridge pier, the major running stream water was guided
and focuses the scouring effect mainly on the 3" pier between sensor number 9 and
10. Photos of the bridge test setup and the scouring test are shown in Figure 2.
Velocity response data of the bridge during scouring process are collected. Figure 3
shows data from sensor node #2 and node #9. The VSE-15D sensor is used nad it is a
servo velocity meter produced by Tokyo Sokushin Co., Ltd. This sensor is very
sensitive to detect the low level vibration motion and the linear range (0.2Hz~70Hz)
is suite for SHM applications. The total run time on this bridge scouring test is 200
min.(12,000 sec). At =5800 sec and t=7500 sec significant change of vibration
measurement at pier No.3 had been observed from sensor node No.9. Data acquisition
system collected all the velocity response of the bridge from all twelve sensors with
sampling rate of 200 Hz. Camera was also installed in each of the bridge pier to
observe the scouring phenomenon. Figure 3 also plot the scouring depth from the
observation. All the test setup will be good for on-line monitoring of the bridge
structure. As shown in Figure 3 at pier 3 the laying depth (embedment depth of sand,
i.e. 30 cm) significantly reduced at the beginning of the incoming water as compare to
the other piers. This si due to the design of the channel to let the scouring

phenomenon becomes more concentrated on one single pier.



From the observation of the response measurement in transverse direction (along
the channel direction) at t=5800ses and at t=7500 sec some abnormal situation were
happened in the bridge structure. This particular time can be used as an index of sever
damage of the bridge if one can use these vibration-based monitoring signals. It is
important to note that if at 7=5800 sec some abnormal phenomenon or features from
the response measurement can be extracted through on-line identification, then these
features can be used for early warning indices before the significant damage of the
bridge. Therefore, on-line system identification techniques from using velocity/
acceleration response become more meaningful if one can detect the abnormal

features prior the significant settlement of the bridge pier.

3. METHODOLOGIES OF ON-LINE SYSTEM IDENTIFICATION
FROM RESPONSE MEASUREMENTS

In this section three different approaches on on-line monitoring of structural vibration
data for operation modal analysis will be discussed which include: the Short Time
Fourier Transform method, the Wigner-Ville transformation and the Recursive
Subspace Identification algorithm.

3.1 Short Time Fourier Transform (STFT)

To investigate the time-varying characteristics of the processed signal (output only),
time-frequency analysis directly from measurements is adopted. STFT uses windowed
regular harmonics and function orthogonality to simultaneously extract time-localized

components. Mathematically, STFT of a signal x(?) can be expressed as:
STFT{x(¢)} = X (r,w) = r’ x(Ow(t —7)e " dt (1)

where w(?) is the window function, commonly a Hamming window or Gaussian "hill"
centered around zero, and x(¢) is the signal to be transformed. The short-time Fourier
transform (STFT) provides one of the techniques to perform the time-frequency
analysis of the data. To apply this method to the bridge vibration data the Hamming
window length is set to 5.0 sec (1000 points), and with moving window of 2.5 sec
(500 points). Data collected from each sensor was calculated individually and plot the
time-frequency-amplitude relationship. Figure 4 shows and time-frequency analysis of
data from sensor No.2 and No.9 by using STFT method. It is interest to know that at

t ®6000secand at ¢ =7500sec the significant change of system dominant frequencies



can be clearly identified. This change of system dominant frequencies is inconsistent

with the damage of the bridge pier (settlement of bridge pier due to scouring).

3.2 Time-frequency Wigner Ville Transformation
A time-frequency transformation, which does not possess the disadvantage of an

additional window, is the Wigner-Ville transformation W (¢, ®):[6]

W, (t,0) = [x(t+75)x" (¢ = Ty)e > dr )

It was presented as a two-dimensional density function. Figure 5 shows the
Wigner-Ville transformation of signals from record at sensor Node 2 and Node 3. the
results from this time-frequency analysis show a better resolution than the STFT.
3.3 Recursive Stochastic subspace Identification (RSSI)
The recursive stochastic subspace identification (RSSI) algorithm is used for
conducting operational model analysis through output-only measurements (or ambient
vibration). A new RSSI algorithm has been proposed to avoid the use of singular
value decomposition [7, 8]. These algorithm consist of two steps: (1) update the LQ
decomposition; (2) update the column space of extended observability matrix. The
first step implies that the LQ decomposition needs to be updated as long as there is a
new set of data provided. The
second step on updating algorithm was proposed how to update the LQ decomposition
when appending only one column to block Hankel matrix. To speed up the
computation for on-line and almost real time computation, an advanced algorithm to
update the LQ decomposition when appending more than one column to block Hankel
matrix will be proposed. Procedures for recursive subspace identification are
described as follows:
1. To compute the LQ decomposition for the recursive subspace identification
algorithm the Givens transformations is used.

2. Considering the recursive identification procedure the new sampling data with the

length of p columns need to be added to the block Hankel matrix, H.; . In order

to remain the same size of Hankel matrix the old data with equivalent length needs
to be eliminated.

3. For recursive identification with p-appended data points the update LQ
decomposition used the Givens rotation twice at one turn. The second Givens

rotation was applied to transform the temporary decomposition into the real LQ



decomposition.
Through this process there is no need to conduct the LQ decomposition on the new
Hankel matrix for each recursive procedure which can reduce the computation time to
extract the system dynamic characteristics. Detail calculation of RSSI can be found in
reference [9]. Figure 6 shows The relationship between the data in moving time
window and the required computation time for each data set.

It is important to note that to extract the system dynamic characteristics from the
observation matrix, distinguish the true modes from the noise modes becomes a very
critical issue. The system order » based on the singular value decomposition (SVD)

of observation matrix O, was first determined. Through the use of singular value

decomposition (SVD) the system order n can be determined from the singular value
greater than the assign value. Then output modal accuracy correlation (OMAC) and
weighted phase error (WPE) procedures can sequentially be used, and the true modes
can be distinguished from the noise modes [10]. Figure 7 shows the identified
time-varying system natural frequencies of the bridge structure by considering all the
measurements from the deck to form the data Hankel matrix for RSSI. It is observed
that the change of system dominant frequencies in relating to the scouring depth and
the pier settlements is closely related. It is important to pointed out that prior to the
t=7800 sec (significant settlement at pier No.3) the change of system dominant
frequencies can be observed.

The above three time-frequency analyses, STFT, WVD and RSSI, are all in
relating to on-line data processing technique. From these analyses a clear picture of
time-varying system natural frequencies can be identified. The fundamental frequency
of the bridge system was changed from 12 Hz to 7.0 Hz where significant settlement
was occurred. These change of system frequencies are in relating the effect of
scouring depth. Scouring may change the boundary condition of the bridge pier which
may cause the degradation of system natural frequencies. For setting an early warning
system on the endangerment of bridge due to scouring, besides the RSSI, more
features need to be explored before the significant change of system natural

frequencies.

4. DAMAGE DETECTION AND LOCALIZATION

Different from the detection of time-varying system natural frequencies, more



significant features which can not only identify the damage nut also detect the damage
locations need to be explored. Through vibration-based monitoring data the on-line
damage location was investigated.
4.1 Application of Cross-correlation Function Amplitude Vector

To avoid the limitation of the model-based damage detection techniques and
considering the need of on-line damage detection, the concept of cross correlation
analysis can be used. One simple approach is to test the cross-correlation from two
measurements at the same time. Consider two random signals the correlation,

x,(¢) and x,(t), the correlation coefficient between these two signals is defined as:
T
J.O x (0)x;(r)dt

Py =
\/JOT x,f(z')a’z'-wf_[: xf(r)dr

where “T” is the time window selected for estimating the correlation coefficient. It is

€)

believed that for an intact structural system the correlation coefficient p,, between

two measurement nodes, k£ and j, should be higher than the damage structure. Suppose
more than two measurements are taken the concept of cross correlation function
amplitude vector (CorV) of the responses of a structure can be used [11]. It is defined
the CorV as:

CorV=_{r, r, ry— Fin § 4)

where 7, 1s the maximum value of the cross correlation function between

x, () and x,(t) (1=1,2,3,...,n):

. 1ogr
ra = max(| Ry (0))]) = lim — [, (), ¢+ (5)

Since that the CorV is a vector, so it can be normalized as follows:
CorV(i)
1
>, Corv( j)‘é

It is believed that the correlation coefficient between the measurement locations

CorV(i) =

(6)

x,(¢t) and x,(t)in a structure should be close to one if the structure is not damage.

Otherwise, the correlation coefficient will be low if damage occurred in the structure.
In order to identify and quantify such a damage that occurred in the structure the

correlation between two CorV'’s is defined:



CvaC= ZCOVDCoVIOT CVACe[0,1] %)

> [CorV()I* Y [CorV* (/)]

where CorV (j) and CorV*(j) indicate the correlation coefficient of two different

state, one is the reference state and other is the damaged state (or data calculated from
different time period to express the different situation to the reference state). Higher
CVAC value indicates higher correlation between the two states.

From the monitoring data of bridge scouring test, first, using Eq.(3), the
correlation coefficient between two measurement locations is calculated. It is assumed
that data from the sensor location No.l is considered as the reference measurement.
For a fix time window the correlation coefficient between the monitoring data from
the reference location and the other measurement location can be generated.
Correlation coefficient with moving time window of 20.0 sec, is generated and shown
in Figure 8. It is observed that a significant drop of correlation coefficient with respect
to the reference measurement location (sensor No.1) was observed at time t=7800 sec.
which is in consistent with the results from time-frequency analysis. the abnormal of
correlation coefficient was also observed between t=6000 sec and t=7800 sec. Based
on Eq.(7) CVAC was also calculated with respect to different reference data
(measurement location). Figure 9 shows the calculated CVAC as a function of time by
considering two different sensing nodes as references. A moving time window with
time window of 20 sec was used. The first time window set of the data will be used as
the undamaged set of data (or reference). From CVAC value one can detect the
abnormal change of CVAC starting at t=6000. sec. which was identified as the prior
information (or early warning
message) to the significant change of CVAC which occurred at =7500 sec. No matter
which location was selected as the reference sensor node the CVAC value can still
detect the damage. It is important to note that the CVAC can provide an early warning
message before the significant change of the system dynamic characteristics (such as
the dramatic drop of system dominant natural frequency).

4.2 Application of Proper Orthogonal Decomposition (POD)
Proper orthogonal decomposition is a procedure for extracting a basis for a modal

decomposition from an ensemble of signals. If the response signal g, (¢) of a discrete

dynamic system with m degree of freedom (d.o.f.) are sampled » times and if the

matrix Q is defined as



q,() - q(@,)
Q=| ¢ - ®)

qm (tl) e qm (tn)
Then the proper orthogonal modes are the eigenvector of G = (%)QQT, and the

corresponding eigenvalues are the proper orthogonal values. It had been proved that
POMs are related to the vibration eigenmodes in some cases. Therefore, the POD
should be an alternative way of modal analysis for extracting the mode shapes of a
dynamic system. The POD was applied to the dynamic response data collected from
the measurements of the bridge scouring test. Figure 10a shows the calculated
time-varying first eigenmode. To evaluate the change of eigenmode along the time
sequence, the initial calculated eigenmode was selected as the reference one; and then
the root-mean-square error of the difference between the reference 1% eigenmode and
the eigenmode calculated from different time window is generated, as shown in
Figure 10b. The same analysis can also be calculated using the 2" mode information,
as shown in Figures 11a and 11b. It is observed that the abrupt change of time can be
identified.

4.3 Damage Detection from Novelty Analysis

Different from the CVAC analysis, to conduct the structural damage diagnosis, based
on the undamaged data the structural system matrix was estimated as a reference state.
First, the reference data set was collected and the SSI algorithm was applied to
estimate the undamaged state of the structural system. Based on the reference data set
(the 1*" initial data set is assumed as the reference data), the SSI method is applied to

identify the undamaged system transition matrices ®,,,,, which can be computed by

exploiting the shift structure of the extended observability matrix.

The novelty analysis on system’s dynamic responses is used to determine the bias
of the predict responses if the system significantly deviates from initial baseline
condition. The idea is to examine if the Kalman prediction model identified from the
reference state data can be applied to newly measured data. Residual error can be
estimated by comparing the predicted responses with the measured ones. The k-step

state vector and the corresponding prediction error are calculated as:
e, =Y -Y. =Y -MX, )

From the prediction error vectors e, at any k-th sampling point, the Novelty index



(NI) is defined as either Euclidean Norm or Mahalanobis Norm [12]:

Euclidean Norm: NI, ® = ||ek || (9a)

Mahalanobis Norm: NI," =,/el X 'e, with X=yy' /N (9b)

The prediction procedure is performed using the data from the reference and actual
states of the structure respectively. In the absence of damage, the level of prediction
errors should remain unchanged. Otherwise, the Novelty index will change
significantly for the damage case. Besides, the outlier statistical analysis, such as
mean and standard deviation of NI, can also give a quantitative assessment of
damage.

In Novelty analysis the identified system transition matrix needs to be estimated in
advance, and the ordinary Kalman filter can be used to predict the sate. The Kalman

filter, in estimating the state consists of two estimates of the state X, : (1) a

predicted estimate Xk+l/k of the state X,,, based on information up to the time

t =kAt (consisting of observations Y,,---,Y, ); and (2) an update estimate

A

X, .1/x, Which is obtained at time ¢=(k+1)Ar when a new measurement Y,,, is
observed. For damage estimation the difference between the predicted estimate of
state vector, X,,=®,,,X, and the measurements is calculated. Recursive

processing of the measurement data is applied through compute the predicted state

and predict the observation Y,,, and compute the update state. For damage

assessment only the predicted measurements are used, the computed update state is
only for the estimation of Kalman gain and the prediction error covariance.

To perform the Novelty analysis using the response measurement of bridge
during scouring process, signals collected from all sensors (12 sensing nodes) are

collected to form the Hankel matrix with dimension of [1200x7900]. The time

window is set to 40 sec. and with moving window of 40 sec. the first time segment
will be used as the undamaged case. Figures 12a and 12b show the plot of the mean
value of Euclidean Norm from each window was calculated from sensor node No.2
and No.9 respectively. It is observed that the mean value of Norm for each time
window increase significantly at /=6000 sec. (particularly for data from sensor No.9
node) which was identified before the significant change of system dominant

frequency. Comparison among the results from RSSI, Novelty analysis and the



vertical deformation measurement at Pier No.3, one can detect the abnormal features
from the vibration measurement before the significant settlement of bridge pier
occurred. This Novelty analysis can also be used for early warning index.

4.4 Singular Spectrum Analysis for damage detection and early warning

The use of singular spectrum analysis is discussed as an alternative to traditional
digital filtering method. Its usefulness has been proven in the analysis of climate and
geophysical time series. A description of the method will be given in this session. SSA
procedure consists of four steps: (1) embedding, (2) singular value decomposition
(SVD), (3) grouping, and (4) reconstruction. The detail description of each step is
shown in formal terms as follows [13, 14]:

Stepl: Embedding The method starts to produce a Hankel matrix from the
time series itself by sliding a window that is shorter in length than the original series.
Firstly, let F = (f,, f,,..., fy.,) be the time series of length N. And let L be the
window length, which is an integer in /< L<N. Each sliding window vector X; with
length of L would then be derived: X; =( 1.1, f;, ...,ﬁ+L-2)T,j =], 2, ..., K, where K
=N-L+1 is the number of columns. The matrix X = [X;, X, ..., Xk/ is a Hankel

matrix (or called trajectory matrix) since all elements in diagonal i+j=constant are

equal.
I fo f1 fz T fK—l |
fl fz f3 o fK
X=|f, /5 foo o Jxa (10)
_fL—l fL fL+l fN—l_
Step2: SVD of the Hankel matrix The Hankel matrix can be represented in

the form: X = E;+ Ez+...+ Eq4, where d is the number of non-zero eigenvalues of

the L x L matrix S = X - X". The i-th elementary matrix, or called i-th eigentriple, are
given by Ej =/2, Ui Vi', where 1., 4,,..4, are the non-zero eigenvalues of S, in

descending order, U;, Uy, ..., Uq are the corresponding eigenvectors, and vectors V;

are derived by Vi=XT - Ui/ N =1, 2, ...,d. The plot of the eigenvalues in descending

order is called the singular spectrum and is essential in deciding the index from where
to truncate the summation.
Step3: Grouping This step is to decide a parameter r to reconstruct an

approximate matrix of X, i.e. X = E;+ Ep+...+ E,. The decision making procedure



may varied depending on the objectives of users. For example, if one intends to derive
the tendency of the structural response displacement, by which the residual
displacement may be clearly indicated, » would be decided as 1, namely the first
leading eigentriple.

Step4: Reconstruction The approximate matrix is no longer a Hankel
matrix, but an approximated time series may be recovered by taking the average of
the diagonals. It is practical to recover the elementary time series for each elementary
matrix. These elementary time series (go, g7, ..., gn7) 1s also called the principal
component. If y; is used to represent the i-¢h row and j-th column element in any
elementary matrix E, the reconstruction algorithm for each principal component can

be formulated as follows:

k+1
ﬁzym,k—m+2 fOFOSk<R—1
1 2 m=l1
g, = Ezymak—mﬂ for R—1<k<P (11)
’"Tl Ni+l
~r 7 ym, —m+ fOI"PSk<N
N -k m=k—P+2 ¢ :

where R=min(L,K), P=max(L,K). The smoothed time series is obtained by adding the
first 7 principal components.

With the concept of moving window (window length=40 sec) the data Hankel
matrix was formed. This analysis can be done either for each sensing node or from all
recorded sensing nodes. Through SVD the on the data Hankel matrix and eigenvalues
were calculated. Figure 13a shows the difference between the first two largest
eigenvalues from each of the sensing node. This figure shows that prior to the
significant settlement of the bridge pier No.3 at 7=7800 sec, the distinct feature of the
difference between two largest eigenvalues can be identified ( at about /=6000 sec).
This feature can be served as an index for early warning. This difference on the first
two largest eigenvalues can also be calculate from all set of measurements instead of
using data from a single sensing node, as shown in Figure 13b (plot in log sacle).
Through the reconstruction process of signal in SSA by using only the first two largest
eigenvales, comparison between the original signal and the reconstructed signal was
made. The reconstruction is using the moving window technique by selecting the time
window of 40 sec and with moving window of 40 sec. The size of the Hankel matrix

is set to 600x7951. The root-mean-square (RMS) error between the reconstructed and



recorded signal is plotted and shown in Figure 14. It is observed that the RMS error of
the sensor signal from node 9 shows a significant change (around =5800 sec) before

the large settlement occurred. This indication can also provide an early warning index.
5 FIELD EXPERIMENTS

Based on the proposed RSSI-DATA method, applications of the methodology to field
test data are conducted. Two field experimental data were collected for this analysis:
a. Vibration measurement of the Nu-Dou old bridge before and during the flood

(typhoon) period.

b. Vibration measurement of New Nu-Dow bridge during and after the typhoon
period.
Discussions on the results of experiments are shown below:

Wireless communication system for data transmission is used in this experiment,
as shown in Figure 15. Figure 16 shows the sketch of the bridge. On Sept. 19, 2010
Fananpi typhoon invading I-Lan area. Significan rainfall was observed in the northern
part of Taiwan. Figure 17 shows the photo of the bridge in its normal weather
condition and in its typhoon period. Application of RSSI-Data to the measurements is
conducted during the flood period and after the flood was gone. RSSI-DATA
method was applied to the recorded data from sensor node D5SH and D14H. It is
observed that time-varying system natural frequencies were observed from the data at
sensor node D14H, as shown in Figure 18. If the recorded data is re-arranged, as
shown in Figure 19, the proposed indices for detection the change of system natural
frequencies can also be applied. Figures 20 and 21 show the same analysis of using
STFT, WVD, Euclidean norm and percentage change of the 1% and 2™ singular
spectrum. It is clearly observed that all these indices can detect the change of
abnormal condition from the measurements. The old Nu-Dow bridge was tear down
due to the newly constructed bridge in its upper stream.

On October 4, 2011, water level at the new Nu-Dow bridge becomes quite high
due the heavy rainfall in mountain area of the upper stream. Five sensors were
deployed on the new bridge to measure the vibration of the bridge during severe
stream flow, as shown in Figure 22. The marked water level during the heavy rainfall
induced stream water is at 204.0 meter. On October 13 the water level was dropt to its
normal condition, i.e. at 202.7 meter. Figure 23 shows the recorded vibration data of

the bridge: one is at the high water level and the other one is at low water level.



SSI-COV was used to identify the system natural frequencies of the bridge under two
different operational measurements. Stability diagram is constructed, as shown in
Figure 24. It is observed that no change on the system natural frequencies from these
two measurements, except that some frequencies can not be detected under the

abnormal loading condition.

CONCLUSIONS

Development of structural diagnostic approaches, in-service monitoring of structures
with sensor networks may serve an important tool to identify the system modal
parameters automatically and evaluate operational health of structures during normal
operation condition. Damage detection algorithms depend on the accuracy of the
modal parameters estimates and the success of on-line structural health monitoring
and damage detection on feature extraction from response data. The main objective of
this study on structural health monitoring (SHM) for bridge structure during scouring
process is to identify the features from the in-situ operational condition and to detect
the changes when damage occurred. Through the experimental study of bridge
damage due to scouring the feature extraction techniques were derived and verified.
The feature extraction techniques on time-frequency analysis include:

1. Short Time Fourier Transform,

2. Wigner-Ville distribution,

3. Recursive Stochastic Subspace Identification

These three methods can be applied for on-line feature extraction, and on the
identification of time-varying system frequencies. With suitable selection of model
parameters one can conduct these analysis in almost real time analysis.

As for damage detection and early warning, distinct feature will be extracted from
measurements before the severe damage occurred. Four methods are proposed in this
study:

1. Moving time window cross-correlation coefficient, p, (X' ,7=0)
2. Generate correlation coefficient between damaged and undamaged
cross-correlation function amplitude vector, CVAC.

3. Conduct Novelty analysis to compare the difference between the measurement and

the estimated response through Kelman estimator by using the undamaged system



matrix generated from SSI analysis.

4. Difference on the eigenvalues from the Singular Spectrum Analysis.
Through the experimental study on bridge damage caused by scouring in the
laboratory, the time-varying dynamic characteristics and the damage features of the
bridge can be identified. It is possible to detect the abnormal situation (or features)

from the response measurements before the significant damage occurred.

Appendix: Mathematical background of RSSI-DATA

Al. THE CLASSICAL SUBSPACE IDENTIFICATION ALGORITH

Consider a discrete time state-space dynamic system with n DOFs. The system

equation can be represented as [15]:

Xpar = 83X, + Bguy, +wy, (1a)

Vie = G X+ Dom £ v (1b)
with Ay = expm(A 4t) € R By = (Ag— 1, JA, 7B, e B*"™ . Ay is
called the discrete-time state matrix, Bz is the discrete-time input matrix,
X, = X(kat) is the discrete-time state vector, &t is the sample time and k € H.
wy, € R*"1 is the process noise due to disturbances or modeling error and

¥, € B'*~ is the measurement noise due to disturbances or sensor error. For white
noise excitation Eq.1 can be replaced by the discrete-time stochastic state space model
[15]:

Xfas = AaKL+ i (2a)
¥E = CXE+ v (2)

where wi € B*™, vl € B are white noises in stochastic system. The superscript

“s” means “stochastic” and it implicates that the system is excited by stochastic
component (noise).

Stochastic Subspace Identification (SSI) using output-only measurement



In stochastic system, using stochastic subspace identification algorithm, the

output Hankel matrix can be constructed from the output data and defined as:

- ¥ -
¥ - ¥
¥ ¥ - ?1:+r_
II‘ :‘I I.I
. -
[EE};] = :-’L }’L.’-r. YL-rl;'-_ g Rk (3)
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FLl'ri. 5"'L!1-=- b Moafie
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.?’:}L ?‘:’M-f. -‘"\:‘L+[-f.-

where i is the number of block rows which is a user-defined index and must be larger
than the order 2n of the system. Since there are only I DOFs measured, the output
Hankel matrix must contain Z[f rows. j is the number of block columns of the
output Hankel matrix. If the sampling length is equal to r then the number j should
be equal to | =r— 2i +1 so that all data are used for analysis. The main theorem of

stochastic subspace identification implicates that the extended observability matrix T}

can be found from the result of orthogonal projection. The orthogonal projection can

be easily expressed in terms of the following LQ decomposition:

iU |

Yol=1 Ly 07 [0.7 o s — (4a)
[‘:’f} I |l L:::| [wLT]Q-fF;?F_L:lQuT
and
Lo, Q,, " = LEF (4b)

where L;; is partitions of the lower triangular matrix from LQ decomposition, € is
the partitions of the orthogonal matrix. This implicates the column space of the
extended observability matrix T, can be obtained from the column space of L.,.
Once L., are obtained from the LQ decomposition of the orthogonal projection, the

system parameters can be determined.
Subspace Identification (SI) using Both Input & Output Measurements
The equation, shown in Eq.l, are also named as a discrete-time combined

deterministic-stochastic system because it is a combination of a deterministic system

and a stochastic system by combining the state X, and output w individually.

Similarly, the input data w,, can be arranged in the Hankel matrix:
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where U, € B™*! is the past input Hankel matrix and U; € E™= s the future
input Hankel matrix. The matrices U} € R™#*%! and U7 € R0 are defined

by shifting the border between U, and U one block row down. Moreover, two

special Hankel matrices consisting of both input and output data are defined as [15]:

7 UF Rf ma5x] E-I- U; R"m-l'l-ﬂ:'lxl 6

The deterministic state X§ is also divided into past and future parts:

el xt o Ker ™ ad xz[xd, xb, - Ke
]EEHH], (7)

From these definitions, the combined deterministic-stochastic model can be
transformed into matrix equations [15]:

Y, =LXS+ H'U_+ Y]
Y:=1;x8 = Hiu+ ¥ ®)
X§=a5'x2+afu,

with
D 0 0 N
c,B, D 0 g
Hi=| CAgB;  GBy Do ogfe
¢4, "By CA By GAS By "t D
IEx ol
E )
&?E[‘&dl—lﬁd '&dl_EEd e ‘&de Rd]E]REnxm.l (10)

where HZ is the low block triangular Toeplitz matrix and &¢ is the reversed
extended controllability matrix. In above equations, the contribution of the
deterministic model is described manifestly and the matrices ¥5 and ¥§ substitute

the contribution of the stochastic model. If the modal properties (natural frequency,



damping ratio and mode shape) of the structure are needed, the “Multivariable

Output-Error State Space” algorithm (MOESP) can be employed to extract the
column space of the extended observability matrix I. from the LQ decomposition of
the Hankel matrix [15]:

m (m+D1 U i

Ul mi Ly @ 07 [Qu” (an
ol (m+1H IL‘E:L L, 0O ] ()
g i Lzg Lagy Laad [g, T
And
(Yol v, B J U = TR /UG = Lyp Qo (12)

column space(L;, )} = column space(I})
Finally, only Ls, factor is needed for system identification. Once L,, are obtained

from the LQ decomposition of the Hankel matrix in Eq.(11), t the singular value

decomposition can be performed, as shown below:

£  07|v,°T
Ly, = USVT =[U; U,] [ ciL S:] [{T] ¥ U, 8 VT (13)
I=U, (if N=2n) (14)

then &y and C, can be determined from I, and the modal properties of the system
can finally be identified.

A2. RECURSIVE SUBSPACE IDENTIFICATION

One of the advantages of the subspace identification algorithms lies in the use of
singular value decomposition (SVD) and LQ decomposition which lead to the stability
and reliability of this technique. However, the traditional subspace identification is not
suitable for on-line computation because the computational complexity of SVD. To detect
the time-varying system the recursive system identification needs to be developed.
Several recursive subspace identification algorithms have been proposed to avoid the use
of singular value decomposition [16, 17]. These algorithms always consist of two steps: (1)
update the LQ decomposition; (2) update the column space of extended observability
matrix. The first step implies that the LQ decomposition needs to be updated as long as
there is a new set of data provided. The second step on updating algorithm was proposed
how to update the LQ decomposition when appending only one column to block Hankel

matrix. To speed up the computation for on-line and almost real time computation, an



advanced algorithm to update the LQ decomposition when appending more than one
column to block Hankel matrix will be proposed. Procedures for recursive subspace

1dentification are described as follows:

A. LQ Decomposition and Given Rotations

Consider the LQ decomposition of a matrix & € E™*® is given by:
A=LQ (15)
where L€ R™*® is a lower triangular matrix and @ € E™*® is an orthogonal matrix
( Le. QTQ=1,). Itisassumed n= m which meets the size of the Hankel matrix in

the subspace algorithms. As the right (= m} columns of L consist entirely of

zeroes, Eq.(15) can be partitioned as:
a=[y ofg”|=ryQy (16)

where L;; isa m ¥ m lower triangular matrix, Qyy € B™%, Q, € R ™58 and
@,, and @,, both have orthogonal rows. L,,{},, is called the thin LQ
decomposition of A.If A has full rank m and it requires that the diagonal elements
of L,y are positive and L,; and ,, are unique, butin general @, is not.

To compute the LQ decomposition for the recursive subspace identification
algorithms the Givens transformations is used. A Givens rotation is defined as a

matrix of the form [19]:

1 ! | m
1 L e 0 e 0 0
g(1,1.8) = i Et CDSEBJ .. Slﬂ(ﬂj 0 £ Emem (17)
I & - —sin(g) cos(8) -~ 0
I

with E®*™ That is, a Givens rotation matrix is an identity matrix with the following
substitutions:

g, = cos(8).g, = =in(8), gy = —sin(B)and g, = cos(8) (17a)
The product g(l,1,&)Tz represents a counterclockwise rotation of the column vector

z € E™*? in the (1,{} coordinate plane of & radians and the Givens rotation g is



clearly an orthogonal matrix since g'g= I. It is easy to zero a selected entry z; in

the column vector z by multiplying a specific Givens rotation to z:

GULLOME = T w B ow E]T=[E w & . O . L ]T (1)

I
with cos(§) = qul, sin(§) = qr"fil’ and I, ='¢|'zl‘ +z#. To introduce zeros in a

matrix A& € E™"% and make it to become a lower triangular matrix L &€ BE™"%, the

matrix A should be multiplied by a series of Given rotations at its right side:

Ag.g.8-8, =L (19)
The dimension of the Givens rotation g, is equal to n X n. Eq.(19) can then be

represented as the LQ decomposition of A:
Let 18878, =G (20)
and

A=AGTG=LG (21
Therefore, a matrix can be transformed into a lower triangular matrix through
multiplying a series of Givens rotation.
B. Form the Block Hankel Matrix

In the output-only SSI the observability matrix I, can be extracted from the
output block Hankel matrix by using the LQ decomposition and the singular value
decomposition:

Yo, 01|Q T F¥D
B 11 T
[‘t’;] e |:I.rnl L2=:| |:Q.ﬂ T = L"::L _?'Uisi?i

- I = U, (22)
Similar procedure for the input/output SI was proposed in the Multivariable

Output-Error State Space (MOESP) algorithm as [15]:

UF L':L1. o 1] Q:I_’LT 0oL ?m.
SN u] 07| = L = F v (T 9) (R
Ye La Laz Lgl|g, 7 :

= I =UF-(8f)7 (23)

In this study a new form of block Hankel matrix was proposed for the recursive
subspace identification. In the beginning, the block Hankel matrix in Eq.(23) is

redefined as:



U
Hlll = !F = [hl h= 1w hl:l e RE',I:‘.EI.'H:'I.K], (24)
Ys

where H,; is a block Hankel matrix consist of the columns vectors hy (1= 1~} and
cach column vector hy contains the input and output data as:

h, =

[Biak Wiskar ™" Umsket Uk Bgas 7 Waks Wi ¥har 7 Fasked|T (25)

As mentioned in Eq.(24) if Hy, is a rectangular matrix and { = Z(m 4+ L)1, the right

(1— 2(m+ Ui} columns of the lower triangular matrix form the LQ decomposition

of H,,; will consist entirely of zeroes. It is useless to compute the excess orthogonal

rows (as @,; in Eq.(16)) because only the first Z(m + L). columns of the lower
triangular matrix is needed to ensuing singular value decomposition. It is feasible to
save time by producing an “economic-size” decomposition. Therefore, this study
yields the square matrix of Hy,; to avoid wasting the computation time by giving a
relationship between the sampling length  (or now, the length of moving window for

updating the LQ decomposition) and the number of block rows i in square matrix

I.Iili:

r=32l+]-1 _
Ez(m+lju=1 = r=2(m+l+11—1 26)
From Eq.(26), if the number of input “m ” and the number of output “/” are both fixed,
then “7” can be determined by assigning the number of block rows “i”. Since now
H,, isasquare matrix, the LQ decomposition of H,, can be defined as:
Hy =L@ € B (27)

where L, € B is a square and lower triangular matrix and @, € B'*! is also
square and orthogonal matrix.

Based on the result of LQ decomposition of Hankel matrix H,,, firstly, a Givens

)
rotations G is used to transform the first p columns of ), into an upper triangular

matrix:

6.0.=lo gl (%)



where &€ RF*F is an upper triangular matrix. Since G, and ), are both

orthogonal, the product of them must be orthogonal:

o g, tz o EEJ 0 ih] = 29

Based on the criteria of Eq.(29), it can be proved that gf g= I, and o =0, then
Eq.(28) can be replaced by:

I (1]
o ] (30)

G.Q, = [ﬂ, 3,

From the first data set, by using the Givens rotation G, the LQ decomposition of

block Hankel matrix H,, as shown in Eq.(27), can be replaced as:

0
Hyy =L@ = EL:I.GT}EG:LQ:J [HllF Ll][ﬂ, Q] [H:I.|r.r L, Q] @3D

From which L, and @,can be estimated through the Givens rotation of L, and Q,,

respectively.

C. Methodology for Recursive Computation

To consider the recursive identification procedure, if the new sampling data with

the length of p are added to the block Hankel matrix H,, , the old data with

equivalent length will be eliminated. The updated block Hankel matrix and its LQ

decomposition is re-defined as:

Hispjep = L@ €BY (p=f) (32)
How to compute the new decomposition {L;.@;} by using the new sampling data
and the old decomposition results, {L,,Q,}, is the crucial issue in recursive
identification.

The Givens rotations G, actually decouples the LQ decomposition of H,, that
the first p columns of L, is returned to the original form of block Hankel matrix
H,, Remove H, 6 from H,, Eq.(32) implies the remains can be represent as:

L0, = Hyyyy = 09 (33)
where ), is orthogonal, and L, is close to be a lower triangular matrix. To
accommodate the recursive procedure, the new data set Hysqy4, i appended to the

remains:



H:L-l-::rll-l-p = [H:L-l-::rll Hl-l-:l.ll-l'[:r] = [I":L Q':L Hl-l-:l.ll-l'g]
. 0 I -
= [Hpsagay Lo \-fh ;J =L, 0Q; (34)
where {J; is orthogonal, and L, is close to be a lower triangular matrix. To make

Eq.(34) become a complete LQ decomposition the Givens rotations G is used again
to transform the
L, into a real lower triangular matrix L.,:

Hosgjsp = (LpGo) (6705) = L@y 35)
For recursive identification with p-shift data point, Figure Al show the summary of
the related equations which were used in two consecutive time window. In summary,

the first Givens rotations G, decoupled the old LQ decomposition so that the old

data can be deleted. After appending the new data, the second Givens rotations G, as
applied which make the temporary decomposition become a real LQ decomposition.
Moreover, a forgetting factor p can also be used to improve the convergence of the
recursive subspace identification by multiplying it to the past data sets in Eq.(34):
L= [Hl-l':l.ll-l-[:r HL:L] (36)

The implementation of forgetting factor is to use the concept of fading memory by
decreasing the weight of data points which were away from the current data. The idea
of fading memory on the previous data can be used especially to detect the abrupt

change of system modal parameters. For example, if the length of moving window is

assumed as r«At=300X00Z=6sec and the shifting length is
p-&t= 10 ¥ 0.0Z = 0.2 sec (r and p indicate the number of data point), and the

forgetting factor can be determined from w!® =0.5 with £=0.9330, and then the

weighting factor can be calculated and applied to the data set of the specified time

window, as shown in Figure A2.
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Figure Al: Correlation of Hankel matrix in recursive formulation from Data Set 1
to Data Set 2 (with shift p step).
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Figure A2: Weighting factor for window length of 6 sec. applied on data between 15
sec and 21 sec.
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Fig.1: Sketch and dimension of the bridge test specimen

Fig. 2: Photos of the bridge test site and the test specimen, (a) before scouring test,

(b) under scouring test, (c) after scouring test.
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Fig. 3: Recorded velocity response from node 1 and node 9 from the bridge scouring
test on date 2011-01-26. The observation of scouring depth from each pier is
also plotted for comparison.
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Fig. 4: Time-frequency analysis from data at node 1 and node 9 by using STFT
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Fig. 10a: Calculated 1* eigenmode from Proper Orthogoanl Decomposition.

1st Eigenvector RMS Error

0.8

RMS

] 20 40 60 80 100 120 140 160 180
Time {min)

Fig. 10b: Root-mean-square value of the difference between reference

eigenmode and the eigenmode calculated from different time window.
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Fig.11a: Calculated 2™ eigenmode from Proper Orthogoanl Decomposition.
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Fig. 11b: Root-mean-square value of the difference between reference eigenmode

and the eigenmode calculated from different time window.
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(a) response at Node 2, and (b) response at Node 9.
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Fig. 13a: Difference between the 1% and 2™ eigenvalue-ratio from Singular

Spectrum Analysis on each measurement (for Nodes 3, 6, and 9).
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Figure 16: The sensor locations along the bridge deck are also shown (in transverse

direction)
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Figure 17: Photos of the Nu-Dow old bridge before and during the typhoon period.
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Figure 18: Identified time-varying system natural frequencies from sensor nodes of

DO05 and D14. Before and during the typhoon period.
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Figure 19: Plot the re-arrange the recorded data from sensor node 5 (by putting the

data during and after typhoon period back to back).
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Figure 20: Result from STFT and WVD analyses on the re-arranged data
from Figure 18.
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Figure 22. Location of sensors in the New Nu-Dow bridge during flood (on

2011-10-3)
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Figure 23. Recorded acceleration on the new Nu-Dow bridge on 2011-10-2 (flood

period with high water level) and on 2011-10-18 (normal water level)
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Figure 24. Stability diagram of the identified structural dominant frequencies from

measurements of two different periods (normal vs. flood period).



